

Transforming XBRL into an OWL
Ontology

Including a comprehensive introduction to

XML, XBRL, NTP, Ontologies and OWL

Version 1.0
(2007-03-13)

Nick Roos 274503
Arjen Vervoort 272407
Maarten Tijhof 275772

Diderik van Wingerden 282798

Seminar Economics and ICT, FEW1904-06

Erasmus University Rotterdam, Erasmus School of Economics

Transforming XBRL into an OWL ontology 1

Contents

I. Introduction ... 4
II. XML... 5

1. Introduction... 5
2. XML Introduction .. 6
3. Stylesheets.. 10
4. XML Schema .. 11

4.1. Introduction... 11
4.2. Element, attribute, simpleType, complexType, sequence, choice ... 13
4.3. Restrictions ... 15
4.4. Substitution... 18
4.5. Nullable and Nillable ... 20

5. The Ref-attribute .. 21
6. Namespaces .. 22
7. Schemalocation .. 24
8. Import .. 25
9. XLink .. 27

9.1. Type... 27
9.2. Arcrole and semantics ... 29
9.3. Overview tables of available XLink-attributes.............................. 30

III. XBRL ... 32
1. Introduction... 32
2. Taxonomy ... 34
3. Linkbase.. 35

3.1. Reference linkbase ... 35
3.2. Labels linkbase .. 35
3.3. Presentation linkbase .. 36
3.4. Calculation linkbase .. 37
3.5. Definition linkbase .. 37
3.6. Arc and Arcrole .. 37

4. Instance.. 38
4.1. Namespace.. 38
4.2. schemaRef element .. 39
4.3. linkbaseRef element.. 39
4.4. roleRef and arcroleRef element... 40

Transforming XBRL into an OWL ontology 2

4.5. Item element... 40
4.6. Context element... 42
4.7. unit element .. 44
4.8. Tuples .. 44
4.9. Footnotes.. 45

5. Namespaces revisited.. 48
5.1. XBRL-Instance ... 48
5.2. ISO-4217 .. 51
5.3. Linkbase ... 51
5.4. XLink.. 52
5.5. XMLSchema-instance .. 52
5.6. US-GAAP... 52
5.7. Overview... 54

6. XBRL supporting documents... 55
6.1. FRTA .. 55
6.2. FRIS... 55

IV. A short overview of NTP ... 56
1. Introduction... 56
2. NTP .. 57
3. Basic structure ... 58
4. Examining an NTP-report ... 60

V. Ontologies, RDF and OWL... 64
1. Introduction... 64
2. Semantic Web.. 65
3. Ontologies ... 67

3.1. Instances .. 67
3.2. Concepts... 67
3.3. Attributes.. 68
3.4. Relations... 69

4. RDF and RDF Schemas .. 70
4.1. RDF.. 70
4.2. RDF Schema.. 72

5. OWL ... 74
5.1. What is OWL? .. 74
5.2. Build-up of an OWL Ontology ... 74
5.3. OWL RDFS Syntax .. 75

Transforming XBRL into an OWL ontology 3

VI. Transforming XBRL into OWL: towards a useful Ontology 76
1. Introduction... 76
2. Goals and boundaries.. 77
3. The ontology and how it is constructed .. 77
4. Issues and open questions ... 83
5. Tools used for constructing the ontology .. 84

VII. List of images ... 85
VIII. List of examples and tables... 86
IX. References ... 88

Transforming XBRL into an OWL ontology 4

I. Introduction

The most important part of this document consists of the authors’ attempt to
transform an XBRL taxonomy into an OWL Ontology. However, before the
transformation process is presented, an elaborate and comprehensive introduction
is given on XML, XBRL, NTP, Ontologies and OWL to make the reader familiar with
these concepts.

This document is written as the final assignment for the course “Seminar
Economics & ICT”, topic “XBRL” for the Master Programme “Economics and ICT”,
Erasmus University Rotterdam. All previous assignment results from this course
are included in this document.

The intended readers of this paper include Professor Pijls for grading the
assignment, people interested in how XBRL can be transformed into an ontology
and people looking for a simple introduction to XBRL and related technologies.

This document is structured as follows: part II contains an introduction to XML,
part III contains an introduction to XBRL, then part IV contains a short overview of
NTP. This is followed by part V on ontologies, RDF and OWL. Then part VI contains
the transformation of XBRL to OWL: a first step towards a useful Business
Reporting Ontology. Finally part VII contains the list of used images, part VIII the
list of examples and tables and part IX references to sources used for writing this
document.

Transforming XBRL into an OWL ontology 5

II. XML

1. Introduction

The goal of this chapter is to give the reader a basic understanding of XML with
respect to the concepts used by XBRL (Extensible Business Reporting Language), a
business reporting-specification based on XML which is becoming the de facto
standard for exchanging financial reporting information. After reading this chapter,
the reader understands enough of XML to delve into the depths of XBRL.

This chapter is structured as follows: paragraph 2 contains a brief introduction to
XML; paragraph 3 contains the basics of stylesheets. Then paragraph 4 is about
XML Schema, paragraph 5 shows how the ref-attribute works, paragraph 6 gives
an introduction to namespaces. Paragraph 7 is about an XML Schema-specific
concept: schemalocation. Then paragraph 8 discusses how to import XML-
documents into other XML-documents, followed by paragraph 9 about XLink.

2. XML Introduction

As XML is one of the biggest buzzwords today, next to AJAX which incorporates
XML as well, a lot has been written about it, its use and its pro’s and con’s. First
off, let’s explain what XML is, and what it stands for.

XML is the abbreviation of “eXtensible Markup Language”, and is a markup
language much like HTML (“HyperText Markup Language”). In contrary to HTML,
XML is specifically intended to carry any data, not to present the data in a different
form to the user. XML was designed to describe data where HTML provides the
means to present the data using predefined tags.

XML doesn’t have any predefined tags, but the user is free to structure an XML-
document as he or she seems fit, when certain rather simple rules are adhered to
of course. As the tags used in a XML-document can be defined differently with
every use, XML can utilize an external source to describe and define the tags being
used. This can be done in either of two ways. The first is by the use of a Document
Type Definition, or DTD. The second is the use of an XML Schema, which will be
elaborated on fully in chapters 3 and 8. DTD is an older standard and is regarded
deprecated and replaced by the newer and more powerful XML Schema
specification.

A very simple example of XML is the following description of a DVD. As we all
know, a DVD has several characteristics such as the name of the film, the price,
the director, the number of discs, the year of production and so forth. In HTML this
data would probably be presented by a table or a list, in XML it would be
something like this:

<?xml version="1.0" encoding="UTF-8"?>

<DVD>

 <name>Lock, Stock and Two Smoking Barrels</name>

 <director>Guy Ritchie</director>

 <year>1998</year>

 <…>…</…>

</DVD>

Example 1 – Simple DVD description

Looking at the given example, several things come to mind. It all starts with the
first line; this is called the XML-declaration. It tells the user the document is
written in XML and adhering to the XML 1.0 guidelines. Furthermore, it tells us the
charset being used is “UTF-8” which is also known as Unicode. This character set
not only holds all Latin characters like the ones being used in this document, but it
also holds the Arabic, Cyrillic and most of the Modern-Chinese characters.

The XML-file continues with the term <DVD>. It being contained in brackets means
it is a tag, not a value. While it is the first tag we encounter, it is the highest

Transforming XBRL into an OWL ontology 6

possible tag, also being referred to as root-tag. There can only be one root in an
XML-document. Everything in the root-element is part of the ‘instance’ DVD. The
tags within the DVD are “children” of the DVD and thus part of it; in fact they are
the characteristics of the given DVD.

Looking at the child elements of the DVD, the first we stumble upon is <name>. In
full:

<name>Lock, Stock and Two Smoking Barrels</name>

Example 2 – An element in full

Everything between < and > stands for the name of the element, and everything
between the tags is the actual value of the tag. Here it says the name of the DVD
is “Lock, Stock and Two Smoking Barrels”.

There are several rules concerning tags, elements and values. For starters, all
elements with a value consist of two tags. Every element has to have the basic
<element>Value</element> construction, so it has to have a start-tag and an
end-tag around the value. Mind you, empty elements are also possible. However,
these elements have an altered notation (syntax), there even are three possibilities
for an empty element to be notated, and these are the following:

<element></element>

<element />

<element/>

Example 3 – Empty elements

To make things a little more complicated the tag <element> can have attributes of
its own as well, and each attribute can have its own value. An example of this is
the following extension to the DVD-example:

<DVD id=”1”>

 <…>…</…>

</DVD>

Example 4 – Extension to the DVD example

This says the DVD with id 1 is provided, the author has chosen to make the id not
part of the nested attributes of the DVD itself, but to supply it separately in the
DVD-tag. Attributes, like tags, are case sensitive, and all attribute-values have to
be enclosed in quotes, either single or double.

Special care is needed when single quotes and double quotes are mixed in use.
<DVD id=”1”> and <DVD id=‘1’> are equal and valid, while <DVD id=’1”> with
the quotes mixed is not. <DVD name=”Devil’s Advocate”> may seem invalid, but
is not as the attribute “name” is properly enclosed in double quotes. The single
quote in the value is not a problem in this way.

Transforming XBRL into an OWL ontology 7

More in general: the attribute value declaration may not contain more then two
(opening and closing) of the same type of quotes. Using the one quote type within
the other quote type is allowed.

As child elements and attributes both are the characteristics of the parent element
they belong to, they’re virtually equivalent. However, there are some
disadvantages to using attributes compared to child elements. These are:

- attributes cannot contain multiple values (child elements can)
- attributes are not easily expandable (for future changes)
- attributes cannot describe structures (child elements can)
- attributes are more difficult to manipulate by program code
- attribute values are not easy to test against a Document Type Definition

(DTD)

It seems the use of attributes is never better that the use of child elements and in
most cases it is like this. Only when the XML is used in addition to HTML, attributes
can come in quite handy as selection of tags is far easier attribute based, than
element-based. As this is a very specific use of XML, we tend to favour the use of
child tags as of the above named disadvantages of attributes.

Every element is case sensitive. This means <DVD> and <dvd> are two different
elements altogether. There are some more rules concerning elements. These will
be shown in the following examples, where only the begin-tags are displayed.

<xmlElement>

<01Element>

<.element>

<element name>

Example 5 – Wrong XML tag names

These are all wrong, as:

- tags cannot start with “xml”
- tags cannot start with numbers
- tags cannot start with punctuation
- tags cannot contain spaces

Furthermore, some other data can be embedded in a XML-document, like
comments, CDATA and processing instructions. This other data also has to adhere
to a strict markup, for example; a comment has to start with <!-- and has to end
with -->. Anything but -- can be put in between, and comments can be placed
anywhere in an XML document.

Transforming XBRL into an OWL ontology 8

Yet another rule is that the tags of the elements have to be nested properly to be
part of a well-formed XML-document. When the author intents to nest an element
in another element, the tags have to be in the right order.

<DVD id=”1”>

 <genres>

 <genreType>Comedy</genreType>

 <genreType>Crime</genreType>

 <genreType>Thriller</genreType>

 </genres>

</DVD>

Example 6 – Correct element nesting

The example above is correct, in contrast to the following:

<DVD id=”1”>

 <genres>

 <genreType>Comedy</genreType>

 <genreType>Crime</genreType>

 <genreType>Thriller</genres>

 </genreType>

</DVD>

Example 7 – Incorrect element nesting

Both examples try to list the different genres, with nested genre-tags, but the
second time the author gets it wrong. The </genres> tag is placed before the
</genreType> tag, so this XML would fail to validate due to it not being well-
formed XML.

Transforming XBRL into an OWL ontology 9

Transforming XBRL into an OWL ontology 10

3. Stylesheets

Considering the fact that an XML-document contains only data, some form of
presentation had to be developed. The way of presentation or even transformation
is called a stylesheet, and is defined by an eXtensible Stylesheet Language (XSL).
As XSL is a little broad, it was set up to be developed in three parts, including XSL
Transformations (XSLT), XSL Formatting Objects (XSL-FO) and XML Path Language
(XPath).

XSLT is a way to transform an XML-document to another format; mostly XHTML,
HTML, plain text, or an intermediate XML-document to be formatted into a PDF-
document later on.

To transform a document from XML into a completely different format XSL-FO has
been developed. An XSL-FO document is not like a PDF or a PostScript document.
It does not fully describe the layout of the text on various pages. Instead, it
describes what the pages look like and where the various content goes. From
there, a FO processor determines how to position the text within the boundaries
described by the FO document. Finally, XPath provides a way to access different
parts of an XML-document.

A stylesheet gives one the ability to completely alter the way an XML-document is
presented. XSL is to XML what CSS (Cascading Style Sheets) is to HTML: it can
present the data in an altered fashion. As for the presentation of the data, this
comparison holds, except that XSL actually outputs the XML into a different format,
whereas CSS leaves the HTML intact and the browser parses it for display.

Stylesheets are often being used in a web-based fashion. The XML transformation
can be done in two different places, either at the server (server side), or by the
computer of the visitor of a webpage (client side).

As XSLT is supported by all modern browsers, this is also the most commonly used
part of the XSL languages.

Transforming XBRL into an OWL ontology 11

4. XML Schema

4.1. Introduction

As mentioned in the XML introduction, XML has only one purpose and that is the
transfer of highly structured data. As XML enables the user to choose their own
tags, attributes names and data structures, some form of specification is needed to
make the data in an XML-document understandable by all parties.

As XML is just plain text in a special markup, the data is always readable but
hardly understandable. Most of the time the author of an XML-document tries to
use quite easy to understand element names, but when this is not the case, or
when the names are in another language, some explanation might come in handy.
This is where XML Schemas come in: they contain the specifications of the
elements, attributes and structure of an XML-document.

As previously mentioned, defining the structure of an XML-document can be done
by either a Document Type Definition (DTD) or by an XML Schema. The main
difference between a DTD and an XML Schema is the fact that the DTD is not in
XML, while the XML Schema is an XML-document on its own. The language an XML
Schema is written in is called XML Schema Definition. (XSD)

The purpose of an XML Schema is to define the valid building blocks of an XML
document, just like a DTD. An XML Schema:

- defines elements that can appear in a document
- defines attributes that can appear in a document
- defines which elements are child elements
- defines the order of child elements
- defines the number of child elements
- defines whether an element is empty or can include text
- defines data types for elements and attributes
- defines default and fixed values for elements and attributes

In contrast to a DTD, an XML Schema also has the following features:

- XML Schemas are extensible to future additions
- XML Schemas are richer and more powerful than DTDs
- XML Schemas are written in XML
- XML Schemas support data types
- XML Schemas support namespaces

When we look at the previously mentioned simple example about the DVDs and
extend it a little, we can create both a DTD and an XML Schema for it:

<?xml version="1.0" encoding="UTF-8"?>

<DVD>

 <name>Lock, Stock and Two Smoking Barrels</name>

 <director>Guy Ritchie</director>

 <year>1998</year>

 <genre>Comedy</genre>

 <genre>Crime</genre>

 <genre>Thriller</genre>

</DVD>

Example 8 – Extended DVD

<!ELEMENT DVD (name, director, year, genre+)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT director (#PCDATA)>

<!ELEMENT year (#PCDATA)>

<!ELEMENT genre (#PCDATA)>

Example 9 – Part of a DTD

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://www.some-url.com"

 xmlns="http://www.some-url.com"

 elementFormDefault="qualified">

<xs:element name="DVD">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="director" type="xs:string"/>

 <xs:element name="year" type="xs:string"/>

 <xs:element name="genre" type="xs:string" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

</xs:schema>

Example 10 – XML Schema (XSD)

As it is quite clear an XML Schema is far less compact compared to a DTD, this is
also the (hidden) power of an XML Schema; it provides much more capabilities to
the user. These capabilities will be discussed in the following paragraph.

Transforming XBRL into an OWL ontology 12

4.2. Element, attribute, simpleType, complexType,
sequence, choice

We’ve described earlier it is possible to add a so-called attribute with its own value
to an element. This attribute can give the reader of the XML document extra
information of the stored data between the element tags.

Attributes are often used for information that is not part of the data. This can for
example be used when the data between the tags is not a name or other textual
information but a file. This is unimportant for the data but important for reader
programs, attributes can be used to give ID-values to certain elements.

In XML Schema simpleType-elements can be used to give constraints to values: it
can be used to give an upper and lower limit to a numeric value. In the following
example the element “region” gives the DVD Region Code of the DVD with a lower
limit of 0 and an upper limit of 8.

<xs:element name="region">

 <xs:simpleType>

 <xs:restriction base="xs:integer">

 <xs:minInclusive value="0"/>

 <xs:maxInclusive value="8"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

Example 11 – simpleType

It is also possible to have an element that can contain elements. This is different
from the previously mentioned simpleType which can only have data in it. For an
element which could contain other elements the complexType can be used. In our
previous DVD example the DVD-element can have child-elements for the
information of a DVD.

<xs:element name="DVD">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="title" type="xs:string"/>

 <xs:element name="director" type="xs:string"/>

 <xs:element name="actor" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

Example 12 – complexType

Transforming XBRL into an OWL ontology 13

As you can see the element DVD contains a sequence of elements. An element
within this complexType can again have children with the use of a sequencelist. A
sequence gives an ordered sequence of sub-elements of the topelement, in this
case: DVD. Besides the sequence element to create in the XML Schema a choice
between elements to be used.

<xs:group name="director">

 <xs:choice>

 <xs:element name="name" type="xs:string"/>

 <xs:sequence>

 <xs:element name="firstName" type="xs:string"/>

 <xs:element name="middleName" type="xs:string" minOccurs="0"/>

 <xs:element name="lastName" type="xs:string"/>

 </xs:sequence>

 </xs:choice>

</xs:group>

Example 13 – Sequence

With the use of these concepts it is possible to create a complete XML Schema
Document (or XSD). For the DVD XML document the XML Schema will be
something like this:

Transforming XBRL into an OWL ontology 14

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="DVD">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="year" type="xs:string"/>

 <xs:element name="region">

 <xs:simpleType>

 <xs:restriction base="xs:integer">

 <xs:minInclusive value="0"/>

 <xs:maxInclusive value="8"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="genres">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="genreType">

 <xs:simpleType>

 <xs:restriction base="xs:string"/>

 </xs:simpleType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="director">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="firstName" type="xs:string"/>

 <xs:element name="middleName" type="xs:string" minOccurs="0"/>

 <xs:element name="lastName" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

Example 14 – The completed XSD

4.3. Restrictions

Within XML schema, any value would be valid when creating a new instance that
follows the schema. These values can be restricted in multiple ways to ensure that
only valid and correct data is entered and accepted by the processor. These
restrictions on the XML elements are called facets.

Transforming XBRL into an OWL ontology 15

As said, there are multiple ways to restrict the elements. The most important ones
are restrictions on values, restrictions on a set of values and series of values. You
can also place restrictions on the use of whitespace characters or on the length of
the value within an element.
When using a restriction on values you can ensure that no value below or above a
certain value is used. This can be done with the following code, this restricts the
element grade to an integer with a value between 1 and 10.

<xs:element name="grade">

 <xs:simpleType>

 <xs:restriction base="xs:integer">

 <xs:minInclusive value="1"/>

 <xs:maxInclusive value="10"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

Example 15 – Value restriction

In a similar way, you can also restrict a set of values. If you have a limited list of
values that are possible, you can add these in the restriction. The element classes
can only have one of the three values given in the code below.

<xs:element name="classes">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="Seminar I&E"/>

 <xs:enumeration value="ICT & Economics”/>

 <xs:enumeration value="Management Control and ICT"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

Example 16 – Value set restriction

Besides limiting the real content it is also possible to restrict a series of value. This
is especially useful to restrict values to specific needs, for example only letters in
lower case of upper case. You can also restrict the number of characters. In the
example, the shortcode for something like a class or subject, must consist of 3
letters. The first character must be a letter in upper case, the second can be in
lower or upper case whilst the last character must be a digit between 0 and 9.

Transforming XBRL into an OWL ontology 16

<xs:element name="shortcode">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:pattern value="[A-Z][a-zA-Z][0-9]"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

Example 17 – Value series restriction

As you can see, restrictions are character based an they can be mixed in any way
that fits your specific case. If do not need to restrict every single character in the
same way if they all have the same restriction. This can be done as in the following
example.

<xs:element name="username">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:pattern value="[a-zA-Z0-9]{6}"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

Example 18 – Number of characters restriction

In this example, when asking for a username the only values accepted are values
that are exactly 6 characters long as restricted by the {6} part in the code. These
characters can be either lower or uppercase or a digit between 0 and 9. If you
would not want digits in the username, the value of the restriction would be
<xs:pattern value="[a-zA-Z]{6}"/>.

The last useful restriction is the restriction on the length of a value that is more
flexible then the previous one that limits the length to a fixed value. You could also
restrict the length to fit between two given values, for example between 6 and 10
characters long.

<xs:element name="username">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:minLength value="6"/>

 <xs:maxLength value="10"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

Example 19 – Length restriction

Transforming XBRL into an OWL ontology 17

As you see, this only restricts the length of the value and not the actual content.
You can also combine these restrictions to create a specific element that exactly
fits your needs. The pattern value and length restrictions combined provide a good
basis to start with when creating restrictions on the actual data contained in an
instance.

4.4. Substitution

With XML Schemas, one element can substitute the other. In practice this means
two elements can have the same meaning while being completely different. As long
as they are member of the same substitution group, they can be interchanged with
each other.

We will show this behaviour with an example of a multi-language login-system, in
which the elements are translated into two languages for easy modification by both
a Dutch and an English speaking person. We’ve taken English as the main
language, and Dutch as a secondary language.

<xs:element name="name" type="xs:string"/>

<xs:element name="naam" substitutionGroup="name"/>

Example 20 – A substitution group

The example above shows that the ‘name’ element is the head element, and the
‘naam’ element is substitutable for ‘name’.

<xs:element name="name" type="xs:string"/>

<xs:element name="naam" substitutionGroup="name"/>

<xs:element name="nickname" type="xs:string"/>

<xs:element name="schermnaam" substitutionGroup="nickname"/>

<xs:complexType name="userinfo">

 <xs:sequence>

 <xs:element ref="name"/>

 <xs:element ref="nickname"/>

 </xs:sequence>

</xs:complexType>

<xs:element name="user" type="userinfo"/>

<xs:element name="gebruiker" substitutionGroup="user"/>

Example 21 – An XSD snippet

The above schema holds the substitution group mentioned earlier, but it also holds
a second substitution group ‘nickname’.

Transforming XBRL into an OWL ontology 18

According to the schema, a valid XML-document would be like this:

<user>

 <name>John Doe</name>

 <nickname>J_D</nickname>

</user>

Example 22 – XML document 1

But, because of the defined substitution groups, the document below would also be
valid. An element of type ’userinfo’ can either be with the name ‘user’ or
‘gebruiker’, and an element with the name ‘nickname’ can be interchanged with an
element called ’schermnaam’.

<gebruiker>

 <naam>John Doe</naam>

 <schermnaam>J_D</schermnaam>

</gebruiker>

Example 23 – XML document 2

Substitution groups can be very powerful tools, and the power might need to be
harnessed in order to be kept in control. This can be done by adding the block-
attribute to the head element.
Adding this attribute, example 19 would then be like this:

<xs:element name="name" type="xs:string" block="substitution"/>

<xs:element name="naam" substitutionGroup="name"/>

<xs:element name="nickname" type="xs:string" block="substitution"/>

<xs:element name="schermnaam" substitutionGroup="nickname"/>

<xs:complexType name="userinfo">

 <xs:sequence>

 <xs:element ref="name"/>

 <xs:element ref="nickname"/>

 </xs:sequence>

</xs:complexType>

<xs:element name="user" type="userinfo" block="substitution"/>

<xs:element name="gebruiker" substitutionGroup="user"/>

Example 24 – Example 19 revised

The simple consequence of this of course is that example 20 is still a valid XML-
document, while example 21 is not anymore.

A final note on substitution groups is the following: an element is only substitutable
with another element if the ‘child-element’ is of the same type, or a derivative of
that type as the ‘head-element’.

Transforming XBRL into an OWL ontology 19

Transforming XBRL into an OWL ontology 20

While this part intends to list the basics of XML to understand XBRL, we know XBRL
uses a different technique for internationalisation to the one being used in the
examples shown in this chapter. We’ve chosen this example as it is quite easy to
understand, internationalisation in the DVD-example also was an option but it
wouldn’t be intuitive.

4.5. Nullable and Nillable

It appears that here are a lot of different approaches to the meaning of nullable
and nillable. Some say that when something is nullable it may have a value of null
but must be present. Others say that a nullable element should not be always
present. The same goes for nillable. There is no information available that specifies
the exact use of both attributes so we present our vision on these two attributes.

Nullable should be used when an element is not required in an instance of a
schema, its usage is allowed but not required. When a user decides not to use this
element it can be left out.

Nillable is different, al be it delicate. When an element has the nillable attribute it
must be present in the instance document. However, the user has the option to
leave its value empty.

The main difference is that in the final instance document is that other people
viewing the document can see that some elements are not filled in when using
nillable. If nullable would be used, the viewers would not have knowledge of the
nullable element.

Transforming XBRL into an OWL ontology 21

5. The Ref-attribute

The ref-attribute in an XML Schema is used as a reference pointer. First, you must
define an element or attribute in the document. At this point you define the name
and content. After that you can duplicate this element or attribute by using the ref
attribute with just the name defined in the previous step.

For example, at the start of the XML Schema you could define the following
element:

<element name=”title” type=”string”/>

Further on in the document you can reference to this element by using the
following statement:

<element ref=”title”/>

6. Namespaces

When using multiple XML files you are likely to run into naming problems. This is
because XML has no predefined element names. When you use the same name in
two different documents and they are used together you will get an element name
conflict. You can avoid this by using namespaces, this allows you to put a prefix
before the element names which associates all child elements with the same
namespace. Because of this, it is possible to tell the two elements apart.

File 1 contains the following lines of code:

<DVD>

 <title>Lock, Stock and Two Smoking Barrels</title>

 <director> Guy Ritchie</director>

</DVD>

Example 25 – File 1

File 2 contains different code but uses the same element name:

<DVD>

 <title>Lock, Stock and Two Smoking Barrels</title>

 <year>1998</year>

</DVD>

Example 26 – File 2

When combining these files containing the code mentioned above will not work.
The solution is the XML namespace. This is done by defining a namespace in the
start tag of the element. In this definition you link to a specific namespace Uniform
Resource Identifier (URI). The only purpose of this is to give the namespace a
unique name, it cannot be used anywhere else. It is common practice to use an
existing webpage containing information about the namespace although this is not
required. You can also define a default namespace, if you do this you don’t have to
use the prefix on all the child elements. We will show an example that applies both
methods. These examples continue with the previous example with File 1 and File
2.

Transforming XBRL into an OWL ontology 22

File 1 with prefix “a” from namespace http://www.some-url.com/a:

<a:DVD xmlns:a=”http://www.some-url.com/a”>

 <a:title>Lock, Stock and Two Smoking Barrels</title>

 <a:director> Guy Ritchie</director>

</a:DVD>

Example 27 – File 1 with prefix namespace

File 2 with a default namespace http://www.some-other-url.com/b:

<DVD xmlns= “http://www.some-other-url.com/b”>

 <title>Lock, Stock and Two Smoking Barrels</title>

 <year>1998</year>

</DVD>

Example 28 – File 2 with default namespace

The DVD element of the first file is now different then the DVD element found in
the second file. You can use both methods to achieve this, however the default
namespace gives a cleaner looking code and is easier to use.

Transforming XBRL into an OWL ontology 23

7. Schemalocation

XML documents are processed for display on the web, reports in PDF format,
etcetera. The creator of the XML document can provide hints for the processor
regarding the location of the schema documents. This basically says to the
processor that the current XML document conforms to the XML schema mentioned
by the schemaLocation attribute. This attribute consists of two values: the
namespace name and the schema location. These two values are separated with a
blank space.

Before you can use the schemaLocation attribute you have to declare the w3.org
namespace because the schemaLocation itself is located in this namespace. Then
you have to map it to a prefix, usually xsi because almost everybody uses this
prefix.

An example:

<dvd xmlns=”http://www.some-url.com/a” xmlsn:xsi=”http://www.w3.org/2001/XMLSchema-

instance” xsi:schemaLocation=”http://www.some-url.com/a a.xsd”>

 <title>Lock, Stock and Two Smoking Barrels</title>

 <director> Guy Ritchie</director>

</dvd>

Example 29 – Schemalocation

In this example we tell the processor that the declarations for attributes and
elements can be found in the “http://www.some-url.com/a” namespace within the
file “a.xsd”. Note that both values are within the same quotation marks.

Transforming XBRL into an OWL ontology 24

8. Import

When you are creating an extensive XML document, chances are that the overview
of the document gets lost because of the sheer size of it. It is possible to deal with
this, you can break up the file into separate, smaller files. These files can then be
imported into the current document. These imported files don’t have to be in the
same namespace as the one you are importing them to. An added bonus, be sided
higher maintainability, is that you can re-use the smaller files in other documents.

The syntax of the import element is the following:

<import

 id = ID

 namespace = anyURI

 schemaLocation = anyURI

 {any attributes with non-schema Namespace} ..>

 Content: (annotation?)

</import>

Example 30 – The import-syntax

The id of the element must be of type ID and be unique within the document. The
namespace of the schema and the schemaLocation can also be declared. These
three items are optional, they are not required. The main advantage of the import
element is that the imported documents can be from different namespaces
whereas the include element adds the components of another document that has
the same target namespace.

A small example of importing a document into another. Yet again the dvd example,
File 1.

<dvd xmlns=”http://www.some-url.com/a”>

 <import href=”moreInformation.xml”/>

 <title>Lock, Stock and Two Smoking Barrels</title>

 <director> Guy Ritchie</director>

</person>

Example 31 – Importing a document into another

The moreInformation.xml file contains the following:

<year>1998</year>

<runTime>107</runTime>

Example 32 – A snippet from moreInformation.xml

Transforming XBRL into an OWL ontology 25

If you put File 1 through a processor it would treat it as if the file looked like this:

<dvd xmlns=”http://www.some-url.com/a”>

 <year>1998</year>

 <runTime>107</runTime>

 <title>Lock, Stock and Two Smoking Barrels</title>

 <director> Guy Ritchie</director>

</dvd>

Example 33 – Import result when processed

Transforming XBRL into an OWL ontology 26

Transforming XBRL into an OWL ontology 27

9. XLink

The XML Linking Language (XLink) specification defines a way to include links to
and from resources in XML-documents. The specification is W3C-recommended and
currently in its 1.0 version. XLink is comparable to the a-element for hyper linking
in HTML, but is much more powerful than that. For one, it provides bi-directional
linking, as opposed to the unidirectional linking of the a-element. Furthermore,
when combined with other specifications like XPointer and XPath, it provides a very
dynamic way of linking XML-documents, but also XML-documents with other
resources.

This chapter gives an introduction of the XLink specification. Special attention is
paid to the following XLink-concepts: type, from/to, href, arcrole and locator.
Simple examples are provided.

9.1. Type

Any XML-element in an XML-document can be used as a link, so the creator is free
to use any valid (or well-formed) element name that seems appropriate. By adding
special XLink attribute-names, values and sub-elements an XML-element is
transformed into an XLink.

XLinks can take different forms, or types, which result in different kinds of links,
with different behaviours. The type-attribute specifies the kind of XLink and
determines which other attributes and sub-elements can be specified for that
specific XLink.
The following types are available:

- simple: simple link
- extended: an extended, possibly multi-resource, link
- locator: a pointer to an external resource
- resource: an internal resource
- arc: a traversal rule between resources
- title: a descriptive title for another linking element

9.1.1. Simple-type
The easiest way of using an XLink is that of the ‘simple’ type. The simple-type
looks the most like the a-element available in HTML. Below an example is given for
the simple-type XLink:

<?xml version="1.0" encoding="UTF-8"?>

<dvd xmlns:xlink=http://www.w3.org/1999/xlink

 xlink:type="simple"

 xlink:href="http://www.imdb.com/tt1254859">

 <name>Lock, Stock and Two Smoking Barrels</name>

 <director>Guy Ritchie</director>

 <year>1998</year>

</dvd>

Example 34 - XLink simple-type

Notice the namespace-declaration which is needed for XLink (see also chapter 6).

9.1.2. Extended-type
With the extended-type it is possible to link between multiple resources and also
distinguish between the type and direction of linking. The following child elements
can be used:

- locator: for a reference to an external resource
- arc: to identify the relationship between resources
- resource: an internal resource

Please look at the following example:

<?xml version="1.0" encoding="UTF-8"?>

<hollywood xmlns:xlink="http://www.w3.org/1999/xlink" xlink:type="extended">

 <actor xlink:type="locator" xlink:label="actor" xlink:href="brucewillis.xml"

xlink:title="Bruce Willis"/>

 <movie xlink:type="locator" xlink:label="portfolio" xlink:href="diehard.xml"/>

 <movie xlink:type="locator" xlink:label="portfolio" xlink:href="hostage.xml"/>

 <type xlink:type="locator" xlink:label="genre" xlink:href="action.xml"/>

 <type xlink:type="locator" xlink:label="genre" xlink:href="drama.xml"/>

 <bind xlink:type="arc" xlink:from="actor" xlink:to="portfolio" title="Performed in

movie"/>

 <bind xlink:type="arc" xlink:from="actor" xlink:to="genre" title="Did genre"/>

</hollywood>

Example 35 - XLink extended-type

The external resource Bruce Willis (note the descriptionary title-attribute which is
used for semantics) is linked to the external resources for two movies (identified as
portfolio) and two genres. The arc-type attribute facilitates the linking of resources,
providing direction of the links and also a possibility for meaningful description (the
title-attribute).

Transforming XBRL into an OWL ontology 28

http://www.w3.org/1999/xlink

9.2. Arcrole and semantics

So far we have seen the following XLink-attributes with our XLink-examples: type
(simple, extended, locator and arc), href, label, from, to and title.
One more complex, yet important, attribute will be discussed here: the arcrole-
attribute. This attribute, together with the role-attribute and title-attribute,
constitute the semantic attributes of the XLink-specification. In other words: with
these attributes some human-understandable meaning can be given.

The title-attribute, as shown before, can be used to give a descriptive title,
intended for human interpretation. The title-attribute can be used with the simple,
extended, locator, arc and resource type XLinks and is fairly simple by nature. The
role-attribute and arcrole-attribute are complementary, as they indicate what role
a linked resource or the link itself plays in the context provided. The role-attribute
can be used with the simple, extended, locator and resource type XLinks. The
arcrole-attribute is used with the arc type-attribute and is used to provide meaning
for the relationship between the resources. Since the simple-type is shorthand for
the extended-type, arcrole can also be used with the simple type-attribute.

However, there is a big difference: where the title-attribute and role-attribute
values are just descriptions in plain text (a string), the arcrole-attribute is actually
a URI pointing to a resource containing information about the nature of the
relationship.

Below the previous extended-type example is complemented with semantics-
attributes:

<?xml version="1.0" encoding="UTF-8"?>

<hollywood xmlns:xlink="http://www.w3.org/1999/xlink" xlink:type="extended"

xlink:title="Resources on acting">

 <actor xlink:type="locator" xlink:label="actor" xlink:href="brucewillis.xml"

xlink:title="Bruce Willis" xlink:role="actor"/>

 <movie xlink:type="locator" xlink:label="portfolio" xlink:href="diehard.xml"

xlink:role="movie"/>

 <movie xlink:type="locator" xlink:label="portfolio" xlink:href="hostage.xml"

xlink:role="movie"/>

 <type xlink:type="locator" xlink:label="genre" xlink:href="action.xml"

xlink:role="genre"/>

 <type xlink:type="locator" xlink:label="genre" xlink:href="drama.xml"

xlink:role="genre"/>

 <bind xlink:type="arc" xlink:from="actor" xlink:to="portfolio"

xlink:title="Performed in movie" xlink:arcrole="http://www.imdb.com/acting"/>

 <bind xlink:type="arc" xlink:from="actor" xlink:to="genre" title="Did genre"

xlink:arcrole="http://www.imdb.com/actingstyles"/>

</hollywood>

Example 36 - XLink extended-type with semantics

Transforming XBRL into an OWL ontology 29

Transforming XBRL into an OWL ontology 30

Notice that some labels and roles have the same value: this is because in this
example we make no distinction between the actor and genres. In practice it may
well be that these values are different. For example: a label with value ‘genre’ can
also be indicated as the genre-name (for example: ‘action’) to provide a finer
grained way of describing linked resources. This then translates also to a more
differentiated connection in the arc-type XLinks: instead of linking actor to all
genres, it can now be linked to individual genres.

Also notice that the attribute-values for the arcroles are not existing resources:
this is done for the simplicity of this example. In practice they should be: for
example when linking to a Cascading Style Sheet, an arcrole could be made to the
CSS 2 specification URL.

9.3. Overview tables of available XLink-attributes

It goes beyond this introductionary chapter to address all aspects of the XLink-
specification. But to give an idea of these aspects, this paragraph contains two
overview-tables of the available XLink-attributes and how these relate to each
other. These can be used for/in further studying of the subject.

The following table contains an overview of which type-attribute values (columns)
can be used in combination with which global attributes (rows). The R indicates a
required-attribute; the O an optional attribute. A blank cell indicates an invalid
combination.

 Simple Extended Locator Arc Resource Title
Type R R R R R R
Href O R
Role O O O O
Arcrole O O
Title O O O O O
Show O O
Actuate O O
Label O O
From O
To O
Table 1 – combinations of XLink-types and attributes (source: W3C 2001)

The following table contains an overview of the child-types which can be used with
a specific parent-type XLink. A blank cell indicates that no child XLink-type can be
used. Note that other XML-elements and attributes can be used, but that they
constitute no meaning when the XLinks are interpreted.

Transforming XBRL into an OWL ontology 31

Parent type Significant child types
Simple
Extended locator, arc, resource, title
Locator title
Arc title
Resource
Title
Table 2 – XLink-types and significant child types (source: W3C 2001)

Transforming XBRL into an OWL ontology 32

III. XBRL

1. Introduction

While our economies and the world keeps on expanding, so does the complexity of
the entire system and does the way we communicate. By this we mean the
personal communication, but also the business-to-business communication
regarding the business’ financial data with, for example, the tax authorities.

With this last communication in mind, some problems arise. How to get this
financial data from your own company to the tax authority? Until recently this was
all done by hand. An employee of the company completed, often in cooperation
with the accountant, the tax forms and sent them through the mail to the tax
authority. After the mail was received, the letters had to be opened and all be
processed by hand. A tax officer read the forms and fed the information into the
system manually after which the final taxes were established.
Nowadays, this process is (partly) digitized, as the tax forms are often sent
digitally via the internet to the tax authority which speeds the process up
significantly.

In our ever becoming more global society standardization of communication is the
basis of proper communication. If something is misunderstood because of
geographical issues or a personal other view on the subject, the consequences can
differ from ‘not a problem’ to ‘major issue’. Coming back to the communication
between the tax authority and a company, all data has to be interpreted right. If
anything goes wrong this could be catastrophic for both parties. The authority
could loose out on income, or the firm has to pay (way) too much taxes.

This is where XBRL comes in. It stands for eXtensible Business Reporting
Language, and supplies the user with a comprehensible and agreed upon set of
standardised variables, values and concepts. As not all companies are the same it
is virtually impossible to catch all used concepts and physical quantities; therefore
this has been taken into consideration during the design of XBRL, and is the
specification based upon XML. To be precise, XBRL is an extension of XML. To
further specify the aspects of XML lies beyond the scope of this chapter, we would
like to refer back to chapter 2.

After recognizing the power of XBRL to communicate in a uniform way where all
concepts and names are understood in the same manner, quite a few questions
come to mind. Is a uniform specification of communication something we really
want? Are there any disadvantages to XBRL? What impact does XBRL have on a
firm? These questions are all very valid ones, and some are still unanswered. As
we do not intend to test XBRL on its capabilities, getting answers to the above
posed questions is not part of this guide. We would like to refer to the known
resources on the internet and in the literature.

Transforming XBRL into an OWL ontology 33

To shortly address the impact XBRL has on a regular firm, we would like to point
out the fact that uniformity in communication also has several implications on how
and what to communicate. General ledgers and year reports as made by firms
differ greatly in lay-out and methodology. For example, firm A likes to calculate its
revenues per country while firm B does it per establishment. To communicate in an
uniform way, the data to communicate must also be uniform so XBRL handles this
by a specification of how to report. This will also be addressed in chapter 6. As the
general ledgers have to be the same throughout all the adoptees of XBRL, all
companies have to adhere to the rules set in the specification which is quite
technical and something completely different to what most company-owners are
used to, this puts quite a lot of tress on them to get it done the right way and in
time. Again, to continue on this matter lies beyond this chapter's scope.

The XBRL concept is specified in the XBRL-specification created by the World Wide
Web Consortium (W3C). The most recent specification of XBRL is XBRL 2.1, issued
in 2003, and amended December 2006. This specification only tells the user the
way to put the right structure into the XBRL-documents, not the contents or
meaning of the data. The latter is described in a taxonomy, described in this
chapter.

As XBRL is in fact just plain text with some very peculiar mark-up, it is nearly
impossible to get a good view of what is in the document. Being an extension of
XML the means to view the document in a comprehensible way are there and a
program to do just that is called a viewer. Some companies have created XBRL-
viewers, including Semansys who kindly put their ‘Taxonomy Viewer’ on the
internet for free.

2. Taxonomy

Being the most important concept of XBRL, taxonomies can be most accurately
described as dictionaries or vocabularies. A taxonomy comprises of several parts
describing various definitions in the financial world. These include time, all known
currencies, debit, credit, debt, projects, and so on.
In short, a taxonomy is the semantics and only contains the meta-data of the
financial data which is contained in an XBRL-document.

Typically, a taxonomy consists of six files, all depicted in the figure shown below.

Figure 1 – Parts of a taxonomy

As can be seen from the names of the different files in a taxonomy, it not only
consists of the simple declarations but it also provides the means to present the
XBRL data in a readable fashion, it determines the calculation to be used and it
relates all definitions in the schema.
These files will be elaborated on in the following chapter.

While XBRL is meant to be an international standard, several countries have their
own taxonomy, the Dutch version is called ‘Nederlands Taxonomie Project’ (NTP)
or Dutch Taxonomy Project. Creating your own taxonomy is not solely for
countries, but it is also being done by specific industries and even some
companies.

Transforming XBRL into an OWL ontology 34

3. Linkbase

In a linkbase a definition of specific information is given about the elements that
are part of the instance document. There are five linkbases existing in every
taxonomy in XBRL.

 Reference linkbase
 Labels linkbase
 Presentation linkbase
 Calculation linkbase
 Definition linkbase

In the following paragraphs a brief review of the different linkbases will be given.
And some code will be used to give an example of how linkbases in XBRL are
constructed. The linkbases are built with the use of the XLink elements (see
paragraph 9 of chapter I). The examples have originated from [What is XBRL?].

In fact, XBRL uses very little of the XLink element, from all the possibilities XBRL
only uses 'locators' and 'from/to' in order to link all documents together.

3.1. Reference linkbase
In the Reference linkbase, the Financial Reporting Standard used is presented. A
link is defined to the specific location where the specific term is defined within the
Reporting Standard. In the example, the link is made to the IFRS of 2003. In “IAS”
“1”, paragraph “66”, subparagraph “g” the information about ‘Cash and Cash
Equivalents’.

<loc xlink:type=’locator’

 xlink:href=’ifrs-ci-2003-07-15.xsd#ifrs-ci_CashCashEquivalents’

 slink:label=’ifrs-ci_CashCashEquivalents’ xlink:title=’ifrs-

ci_CashCashEquivalents’/>

<reference xlink:type=’resource’

 xlink:label=’_ifrs-ci_CashCashEquivalents_link’

 slink:title=’ifrs-ci_CashCashEquivalents’>

 <ifrs-ci:Name> IAS </ifrs-ci:Name>

 <ifrs-ci:Number> 1 </ifrs-ci:Number>

 <ifrs-ci:Paragraph> 66 </ifrs-ci:Paragraph>

 <ifrs-ci:Subparagraph> g </ifrs-ci:Subparagraph>

</reference>

Example 1 – Reference

3.2. Labels linkbase
In the Labels linkbase it is possible to link a label from outside of the taxonomy
with a terminology that is comprehensive for the reader in a future report. With the

Transforming XBRL into an OWL ontology 35

use of the Labels linkbase it is also possible to give different language
terminologies to the label. In the example code the English and Dutch synonym of
the title “CashCashEquivalents” are placed.

<loc xlink:type=’locator’

 xlink:href=’ifrs-ci-2003-07-15.xsd#ifrs-ci_CashCashEquivalents’

 xlink:label=’ifrs-ci_CashCashEquivalents’

 xlink:title=’ifrs-ci_CashCashEquivalents’/>

<label xlink:type=’resource’

 xlink:label=”_ifrs-ci_CashCashEquivalents_link’

 xlink:title=’ifrs-ci_CashCashEquivalents’

 xlink:role=’http://www.xbrl.org/linkprops/label/standard’

 xml:lang=’en’> Cash and Cash Equivalents </label>

<label xlink:type=’resource’

 xlink:label=”_ifrs-ci_CashCashEquivalents_link_nl’

 xlink:title=’ifrs-ci_CashCashEquivalents’

 xlink:role=’http://www.xbrl.org/linkprops/label/standard’

 xml:lang=’nl’> Liquide middelen </label>

Example 2 - Labels

3.3. Presentation linkbase
For the reporting of financial facts the Presentation linkbase is used. In this
linkbase the position of the financial asset in the report is defined. In the following
example the post “CashCashEquivalents” is placed on the ninth position of the
Current Assets post.
In the Presentation linkbase the Child-Parent combination is used.

<presentationArc xlink:type=’arc’

 xlink:from=’ifrs-ci_CashCashEquivalents’

 xlink:to=’ifrs-ci_CurrentAssets’

 xlink:show=’replace’

 xlink:actuate=’onRequest’

 xlink:title=’Go up to: CashCashEquivalents’

 xlink:arcrole=’http://www.xbrl.org/linkprops/arc/child-parent’ order=’9’

use=’optional’/>

<presentationArc xlink:type=’arc’

 xlink:from=’ifrs-ci_ CurrentAssets’

 xlink:to=’ifrs-ci_CashCashEquivalents’

 xlink:show=’replace’ xlink:actuate=’onRequest’

 xlink:title=’Go down to: CashCashEquivalents’

 xlink:arcrole=’http://www.xbrl.org/linkprops/arc/parent-child’ order=’9’

use=’optional’/>

Example 3 – Presentation

Transforming XBRL into an OWL ontology 36

3.4. Calculation linkbase
As the name already says, the Calculation linkbase is used to calculate the different
subtotals of the financial report. Every post is given a weighting value of “1” or “-1”
to define position of the value of the label on the balance. If this value must be
added to the subtotal of the Parent, the value is “1”. If the value must be
subtracted, the value must be “-1”. In the example, the “CashCashEquivalents”
post has a weighting value of “1” and so it is added to the subtotal. Together with
the other children of Current Assets this makes up the total value of the post.

<calculationArc xlink:type=’arc’

 xlink:from=’ifrsci_CashCashEquivalents’

 xlink:to=’ifrs-ci_CurrentAssets’

 xlink:show=’replace’

 xlink:actuate=’onRequest’

 xlink:title=’Go up to: CashCashEquivalents’

 xlink:arcrole=’http://www.xbrl.org/linkprops/arc/child-parent’ weight=’1’

use=’optional’/>

Example 4 - Calculation

3.5. Definition linkbase
Every link that is not represented in the Presentation linkbase is defined in the
Definition linkbase. With this Definition linkbase it is also possible to make links
with other taxonomies on an element level. With the use of this link it is possible to
show that Reporting Standards between different taxonomies can be identical for
this element.

An other functionality of the Definition linkbase, that does not influence the XBRL-
processor at all but creates a more comprehensive picture for human beings, is the
possibility to link two meanings that are similar with each other.

The XBRL International organisation has presented a document that explains how
an organisation, branch or country can create their own taxonomy. To create these
taxonomies, special taxonomy builders are available from several commercial
suppliers.

3.6. Arc and Arcrole
As you can see in the examples of the Presentation linkbase and the Calculation
linkbase the words “arc” and “arcrole” can be found. These so called Arcroles
makes the connection between these two linkbases. For more information about
arcroles see paragraph 9.2 of the XML chapter.

Transforming XBRL into an OWL ontology 37

4. Instance

An XBRL instance basically is a linear collection of items, context and tuples. These
subjects will be reviewed within this chapter. What you will see is that XBRL does
not provide any means to restrict or guide the information captured in an instance.
While XML provides in the tools to place restrictions on elements, XBRL chooses
not to implement these possibilities. The result is that there is no format restriction
on the elements, it could be possible to have two items with the same name with
different values within an instance.

4.1. Namespace
An XBRL instance starts with the <xbrl> element and ends with </xbrl>. Within
the first statement the basic parts of an xml file are defined such as the
namespace and schema location. With XBRL, this is also the case. The opening tag
usually contains quite a large list of namespaces. Let’s start with an example from
the XBRL 2.1 specification.

<xbrl xmlns="http://www.xbrl.org/2003/instance"

 xmlns:xlink="http://www.w3.org/1999/xlink"

 xmlns:link="http://www.xbrl.org/2003/linkbase"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:ci=”http://www.xbrl.org/us/gaap/ci/2003/usfr-ci-2003”

 xsi:schemaLocation="

 http://www.xbrl.org/us/fr/ci/2003/usfr-ci-2003

 http://www.xbrl.org/us/fr/ci/2000-07-31/usfr-ci-2003.xsd">

 <link:schemaRef xlink:type="simple"

 xlink:href="http://www.xbrl.org/us/fr/ci/2000-07-31/usfr-ci-2003.xsd"/>

 <ci:assets precision="3" unitRef="u1" ontextRef="c1">727</ci:assets>

 <ci:liabilities precision="2" unitRef="u1" contextRef="c1">635</ci:liabilities>

 <context id="c1"><!-- ... --></context>

 <unit id="u1"><!-- ... --></unit>

</xbrl>

Example 5 – XBRL instance example

These namespaces are all given an alias in order to increase readability for people
and reduce the amount of text every time the namespace is used. It is not
necessary since the processor of this file replaces every alias with the complete
namespace. You can also write the entire namespace if desired. These namespaces
are further discussed in chapter 5. After all the namespaces are given an alias, the
schemaLocation is defined. While this is present in the example, its function has
been replaced by the schemaRef element since XBRL version 2.1.

Transforming XBRL into an OWL ontology 38

4.2. schemaRef element
The replacement of the schemaLocation element by the schemaRef element is part
of the changes in XBRL 2.1. The complete set of taxonomy schemas and link bases
supporting an XBRL instance has been defined as a Discoverable Taxonomy Set
(DTS). This schemaRef element is obligatory; each XBRL document must at least
have one of these elements. It should be placed as a child element of the XBRL
element but before all other child elements. This tells the processor to what
taxonomy this document adheres and where it is located. When using both a
schemaLocation and a schemaRef, it should be checked if the information in both
files is consistent. If they have inconsistencies, the processor may produce an error
while processing. It is advised to make sure both files are consistent to prevent
unexplainable errors or just leave the schemaLocation element out.
In this example, the schemaRef is the only element of the DTS, linking to the pgc-
2005.xsd taxonomy. It is possible to link multiple taxonomies from a single
document to use elements found within these taxonomies. Each of these links
should be defined in a <link:schemaRef> element.

4.3. linkbaseRef element
What is not shown in the example from the XBRL specification is the linkbaseRef
element. This element identifies a linkbase that becomes part of the DTS. It is not
obligatory to use a linkbaseRef but when used, it should be placed directly after the
schemaRef element and before any other elements in the document.

<link:linkbaseRef xlink:type="simple"

 xlink:href="http://www.someurl.com/calculation/calculation.xml"

 xlink:role=" http://www.xbrl.org/2003/role/calculationLinkbaseRef"

 xlink:arcrole=”http://www.w3.org/1999/xlink/properties/linkbase” />

Example 6 – linkbaseRef notation

When using the linkbaseRef element, an xlink:type must be present and must have
a fixed content “simple”. It also must contain an xlink:href attribute containing a
URI. This must point to a linkbase that contains the extended links determined by
the value of the xlink:role attribute. This xlink:role attribute can constrain the
kinds of extended links that are permitted within the identified linkbase. There are
several possibilities, shown in the table below.

Transforming XBRL into an OWL ontology 39

Transforming XBRL into an OWL ontology 40

Values of the linkbaseRef xlink:role

attribute

Element pointed to by xlink:href

(unspecified) MAY contain any extended link

elements

http://www.xbrl.org/2003/role/calculationLin

kbaseRef

MUST contain only calculationLink

elements

http://www.xbrl.org/2003/role/definitionLink

baseRef

MUST contain only definitionLink

elements

http://www.xbrl.org/2003/role/labelLinkbase

Ref

MUST contain only labelLink

elements

http://www.xbrl.org/2003/role/presentationL

inkbaseRef

MUST contain only presentationLink

elements

http://www.xbrl.org/2003/role/referenceLink

baseRef

MUST contain only referenceLink

elements

Table 1 - Roles in the linkbaseRef element

The xlink:arcrole attribute must be included in this format to indicate that the
linkbaseRef element points to a linkbase. When it is not included, a processor can
not know the target of the linkbaseRef without accessing it. This would increase the
processing time so the xlink:arcrole attribute is required, informing the processor
that the target is a linkbase.

4.4. roleRef and arcroleRef element
Other optional elements in an XBRL instance are the roleRef and arcroleRef
elements. The roleRef element is used to reference to definitions of any custom
xlink:role attribute value used in footnote links in the XBRL instance. The
arcroleRef element is used for the same purpose, only referencing to custom
xlink:arcrole attributes in the footnote links instead of xlink:role attributes. When
used, the roleRef element must be places directly after the linkbaseRef element.
The arcroleRef element goes directly after the roleRef element.

4.5. Item element
Let’s get back to example 5, the XBRL instance example. There are not only
elements within an XBRL instance. There are also items, the real data within the
document. These items represent a single fact or business measurement in the
form of an abstract element. Because of this, an item will never appear alone in an
XBRL instance. All items are part of a substitution group item of a substitution
group based on item. These item elements must not be descendants of other item
elements. Any structural relationships must be captured using tuples. Intellectual
structure is captured by the linkbases instead of incorporating them within the
XBRL instance.

 <ci:assets precision="3" unitRef="u1" ontextRef="c1">727</ci:assets>

 <ci:liabilities precision="2" unitRef="u1" contextRef="c1">635</ci:liabilities>

 <context id="c1"><!-- ... --></context>

 <unit id="u1"><!-- ... --></unit>

Example 7 – Items example

The value of the assets in this numeric context has the value “727” and the value
of the liabilities has a value of “635”. Because these are numeric items, they must
have either a precision or a decimals attribute unless it is of the fractionItemType,
derived of this type or has a nil value. In those cases, it should not have either
attributes. Any other numeric item must have one of the two attributes, not both.
All other non-numeric items must not have a precision or decimals attribute.

4.5.1. precision attribute
In this example these precision attributes are given values of “3” and “2”, meaning
that the value is know to be trustworthy for the purpose of computations. The
value of the attribute identifies to what extend the value of the element is
trustworthy. The value of a precision attribute must me a non-negative whole
integer. In this example the first element has a precision attribute with a value of
“3” indicating that, reading from left to right and ignoring any zero digits, the first
3 digits are trustworthy. An application that performs calculation with these figures
should ignore any digits after the first 3 non-zero digits. By ignoring we don’t mean
just using the first 3 digits but replacing all other digits with zeroes. So, if an
application does a calculation with the assets, it should use the value “727”. If it
does a calculation with the liabilities, it should use the value “630”.

4.5.2. decimals attribute
The decimals attribute must be an integer but can be negative. It specifies the
number of decimal places that may be considered accurate as a result of rounding
or truncating. If it has a value of “3”, the first 3 decimal places are known to be
accurate. Meaning that an element with a value of “79” with a decimals attribute
with a value of “3”, during calculations it should be regarded as “79,000”. If the
element would be “79,0678” with a decimals attribute of “2”, it should be regarded
as “79,06”. If the attribute is negative, “-3” for example, the value of the element
is known to be accurate for all elements left of the third digit. An element with a
numeric value of “12345” and a decimal attribute with value “-3” should be
regarded as “12000”. If the decimal attribute would be “-1”, the value should be
regarded as “12340”.

4.5.3. contextRef attribute
The elements have more attributes, the contextRef and unitRef attribute. All items
must have a context; tuples must not have a context. This context is identified
using the contextRef attribute. This indicates the context element associated with
the item. The value of the contextRef attribute must be equal to an id attribute of
the context element within the same XBRL instance. In the example, the items
both have a contextRef with value “c1”. Further on in the document, a context

Transforming XBRL into an OWL ontology 41

element is present with an id attribute with value “c1”. This context holds more
relevant information about the facts in the item.

4.5.4. unitRef attribute
Besides a context, all numeric items must have a unitRef attribute. Non-numeric
items and tuples must not have this unitRef attribute. As with the contextRef
attribute, the unitRef attribute must have a value equal to the id attribute of a unit
element within the same XBRL instance. In the example, the items have a unitRef
with value “u1” and a unit element is present with id attribute “u1”. This unit
element contains information on the units of measurement used.

4.6. Context element
As said before, the context element holds relevant information about facts
presented in the items. It contains information about the entity itself, the reporting
period and the reporting scenario. This information is necessary to understand the
underlying business facts captured in the XBRL instance. The context element must
adhere to a specific XML schema.

<schema targetNamespace="http://www.xbrl.org/2003/instance"

 xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:xbrli="http://www.xbrl.org/2003/instance"

 xmlns:link="http://www.xbrl.org/2003/linkbase"

 elementFormDefault="qualified">

 <element name="context">

 <annotation>

 <documentation>

 Used for an island of context to which facts can be related.

 </documentation>

 </annotation>

 <complexType>

 <sequence>

 <element name="entity" type="xbrli:contextEntityType" />

 <element name="period" type="xbrli:contextPeriodType" />

 <element name="scenario" type="xbrli:contextScenarioType" minOccurs="0" />

 </sequence>

 <attribute name="id" type="ID" use="required" />

 </complexType>

 </element>

</schema>

Example 8 – Context element XML schema

Transforming XBRL into an OWL ontology 42

Transforming XBRL into an OWL ontology 43

4.6.1. id attribute
Every context element must contain an id attribute; this gives the context a unique
name that can be referenced to by item elements with a contextRef attribute. This
id attribute must conform to the XML rules for attributes with the ID type and it is
required not to start with a number.

4.6.2. period element
The period element is used to define the time referenced by an item element. This
can be a time span with a starting and ending date(startDate and endDate), a
point in time (instant) or it can be forever (forever). These options have
requirements, all specified within another XML schema. If an item element has a
periodType=“instant”, the period element must contain an instant element. If the
item element has a periodType=“duration”, it must contain either forever of a valid
sequence of startDate and endDate. This sequence can be defined but when it is
not specifically defined, the date elements take on default values of startDate and
endDate. The startDate will be the current date and a time part of T00:00:00, the
nextDate will be midnight of the same day, the current date plus P1D with timepart
T00:00:00. This is because a value of 24 is not allowed. When the endDate is
supplied, it must specify a point in time later then the specified or implied
startDate.

4.6.3. entity element
Another obligatory part of the context element. This describes the entity of the fact
captured in the item, whether it is a business, individual, government department,
etc. This element must contain an identifier element. This identifier identifies a
scheme for identifying business entities. This scheme attribute contains the
namespace URI of the identification scheme. The value of the identifier element
must be a token that is valid within the specified scheme. This is not checked by
XBRL since it is not a naming authority for business entities so be sure it is valid.
The second element within the entity element is the optional segment element.
This is used as an add-on where the entity identifier is insufficient. The elements
used must not be part of the XBRL defined namespace at
“http://www.xbrl.org/2003/instance”. They also must not be in the substitution
group of elements defined in this namespace. However, it also must not be empty
when used. If you use this element you must provide the proper namespace
support to ensure that a XML schema validator can properly validate the segment
element.
The final, optional, element is the scenario element. As with the entity element, it
must not be defined within the XBRL instance namespace and when used must not
be empty. This element is used to document the circumstances during the
measurement of the business facts captured in the XBRL instance. This can be
things as actual, budgeted, estimated and more. As long as a proper namespace is
provided, anything is possible for internal use.

Transforming XBRL into an OWL ontology 44

4.7. unit element
The unit element gives information about the measured units of a numeric item.
This content must be a simple unit with a single measure element or a ratio of
products of units of measure. This ratio is represented with a divide element
containing a numerator and denominator.

4.7.1. id attribute
Each unit element must have an id attribute, just as the context element this gives
a point of reference for item elements in the instance. This id attribute must
conform to the XML rules for attributes with the ID type and it is required not to
start with a number.

4.7.2. measure element
This element is of the type xsd:QName. Some facts have restrictions on the
content of the unit element and the value of the measure element. This is because
of the type of concept they represent. The monetaryItemType of derivatives of it
must have xsd:QName=“http://www.xbrl.org/2003/iso4217”. This contains an ISO
4217 currency designation that was valid during the time period in which the
measurements have taken place. Items of the type sharesItemType and
derivatives must have xsd:QName=“http://www.xbrl.org/2003/instance”.
Rates, percentages and ratios must be reported with decimal or scientific notation,
not with values multiplied by 100. The original values must be used and the prefix
used must resolve to the “http://www.xbrl.org/2003/instance” namespace.
Complex items can be used but must be expressed with simple items,
multiplication of measured elements combined with a divide element.

4.8. Tuples
As some business facts can only be understood if they are combined with another
fact, a tuple exists. Most of the time, each and every business fact makes for one
independently understandable fact. A tuple is a set of facts, combined. Tuples are
of great value when a fact is repeated multiple times, so the individual occurrences
can easily be seen separately.

Tuples also have strict rules to adhere to, as they consist of complex content. A
tuple may contain both items and other tuples, and is like the item-element an
abstract element. The following rules apply to tuples and consequently to their
declarations in taxonomy schemas:
Tuples and the children of the tuple must be members of the substitution group
that has tuple as its head, which makes the tuple to be declared globally as only
global items can occur in a substitution group.
A tuple cannot contain periodType and/or balance attributes, nor can they or the
tuple definitions in taxonomy schemas contain or permit either mixed or simple
content.
As tuples would be referenced from elsewhere, the specification of an id attribute is
recommended, but not required. If this attribute is not specified, the tuple cannot
be referenced by shorthand xpointers.

Tuple declarations in taxonomy schemas should not, but are prohibited to, specify
local attributes, other than the id attribute mentioned in the previous rule.

An example of a tuple is the following, copied from the reference-manual.

<s:managementInformation>

 <s:managementName contextRef="c1">Haywood Chenokitov</s:managementName>

 <s:managementTitle contextRef="c1">President</s:managementTitle>

 <s:managementAge precision="2" contextRef="n1" unitRef="u1">42</s:managementAge>

</s:managementInformation>

<s:managementInformation>

 <s:managementName contextRef="c1">Miriam Minderbender</s:managementName>

 <s:managementTitle contextRef="c1">CEO</s:managementTitle>

</s:managementInformation>

Example 9 – Tuples

As tuples can themselves contain other tuples and other complexContent, a
layered structure can be created.

Figure 2 – Hierarchy in a tuple.

The content models for tuples can be defined using only XML Schema; content
models for tuples are not defined or modified by any of the XBRL linkbases.

4.9. Footnotes
Besides the relations depicted in tuples, non-fixed relations between elements also
can be found in quite a few XBRL-documents. These irregularly structured
associations can also be embedded in an XBRL-document by the use of the
footnoteLink element.
This element can contain up to five elements: title, documentation, loc, footnoteArc
and footnote, of which we will discuss some in the following paragraphs.
The next example is also taken from the definition-manual.

Transforming XBRL into an OWL ontology 45

<link:footnoteLink

 xlink:type="extended"

 xlink:title="1"

 xlink:role="http://www.xbrl.org/2003/role/link">

 <link:footnote

 xlink:type="resource"

 xlink:label="footnote1"

 xlink:role="http://www.xbrl.org/2003/role/footnote"

 xml:lang="en">Including the effects of the merger.</link:footnote>

 <link:footnote

 xlink:type="resource"

 xlink:label="footnote1"

 xlink:role="http://www.xbrl.org/2003/role/footnote"

 xml:lang="fr">Y compris les effets de la fusion.</link:footnote>

 <link:loc xlink:type="locator" xlink:label="fact1" xlink:href="#f1"/>

 <link:loc xlink:type="locator" xlink:label="fact1" xlink:href="#f2"/>

 <link:loc xlink:type="locator" xlink:label="fact1" xlink:href="#f3"/>

 <link:footnoteArc

 xlink:type="arc"

 xlink:from="fact1" xlink:to="footnote1"

 xlink:title="view explanatory footnote"

 xlink:arcrole="http://www.xbrl.org/2003/arcrole/fact-footnote"/>

</link:footnoteLink>

Example 10 – Footnotes in different languages

The footnoteArc element connects, very similar to a regular arc-element in XML,
several elements to each other. This footnoteArc connects 2 footnotes to three
elements.

4.9.1. Locators
The different locators within the footnoteLink element have to adhere to some
rules; they have to be loc elements. Also, the loc element can only point to items
or tuples in the same XBRL instance that contains the loc element itself.

4.9.2. Footnote element
The footnote element is the only allowed resource in a footnoteLink element. A
footnote element may have mixed content containing a simple string or XHTML, or
a mixture of both.

A footnote element has only one predefined role, which is:
“http://www.xbrl.org/2003/role/footnote”. Furthermore, every footnote element is
obliged to have an xml:lang attribute specifying the language used for the content
of the specific footnote.

Transforming XBRL into an OWL ontology 46

http://www.xbrl.org/2003/role/footnote

Transforming XBRL into an OWL ontology 47

4.9.3. footnoteArc element
A footnoteArc element has the same syntax as a generic extended link arc, which
can be found in the XBRL specification. Being a link arc, it has to have a role-
attribute and all cases for the footnoteArc element this will be:
“http://www.xbrl.org/2003/arcrole/fact-footnote”.

This element also has the optional title attribute which has to have, when used, a
string as its value. The title can be used to give information about the relationship
between facts and related footnotes to users navigating between those facts and
footnotes.

http://www.xbrl.org/2003/arcrole/fact-footnote

Transforming XBRL into an OWL ontology 48

5. Namespaces revisited

As mentioned in the previous paragraph an XBRL-instance contains a lot of
references to various namespaces to define the “worlds” of elements which can be
used in the instance. Each namespace is basically a logical group of element
specifications, made for a specific, distinct part of XBRL. Such a namespace is then
contained in a schema (taxonomy) which contains the actual definitions. Though it
is possible to include all namespaces and element definitions into one taxonomy, it
makes sense to distinguish various parts:

- each special-purpose namespace/taxonomy can be managed by a different task

force of experts: they do not get in each other’s way when releasing a new
version or naming elements and attributes

- for an XBRL-instance creator it is possible to combine different
namespaces/taxonomies into one complete set, according to his special needs

- various XBRL-standards exist for various purposes, but some parts are equal
for all: these parts can be contained in a namespace/taxonomy which does not
change as frequently

- for people writing or reading an XBRL-instance it is convenient to have a logical
grouping of definitions which belong to each other and can be identified with
their own namespace

In this paragraph the namespaces typically used in an XBRL-instance will be
described: XBRL-Instance (xbrli), ISO-4217 (iso4217), Linkbase (link), XLink (xl),
XMLSchema-instance (xsi) and USA-GAAP (ci).

5.1. XBRL-Instance

The XBRL-Instance (XBRLI) namespace is meant for containing the basic structure
(elements, attributes) and data types of an XBRL-instance document. The
namespace of the XBRL-Instance is called: “http://www.xbrl.org/2003/instance”.
Since a namespace is just an identifier, it does not have to point to a real URI.
Instead the schema for this namespace for the XBRL 2.1 specification can be found
at: “http://www.xbrl.org/2003/xbrl-instance-2003-12-31.xsd”.

So, in short: the definition of the XBRL-Instance namespace for XBRL 2.1 is
contained in the schema: “http://www.xbrl.org/2003/xbrl-instance-2003-12-
31.xsd”. Paragraph 4 gives a detailed description of how an XBRL-instance is
structured and which elements can be used for what purpose. For this reason this
paragraph will only give a brief overview of what the purpose is of the xbrli
namespace and how it is defined in the accompanying schema.

First of all the XBRLI-schema imports another schema: “xbrl-linkbase-2003-12-
31.xsd”. This schema is imported, concerning the namespace:
“http://www.xbrl.org/2003/linkbase”. So the linkbase-schema is imported, but not

http://www.xbrl.org/2003/instance
http://www.xbrl.org/2003/xbrl-instance-2003-12-31.xsd
http://www.xbrl.org/2003/xbrl-instance-2003-12-31.xsd
http://www.xbrl.org/2003/xbrl-instance-2003-12-31.xsd
http://www.xbrl.org/2003/linkbase

Transforming XBRL into an OWL ontology 49

used in the XBRLI-schema itself. It is now possible to use the Linkbase-schema in
an XBRL-instance without referencing it separately.

Second, the XBRLI-schema defines the structure of an XBRL-document. This
structure is presented in figure 3 on the following page:

- “xbrl” is the root element of the instance
- The xbrl-element can contain a custom number of attributes, of which the id-

attribute is an optional one.
- Below the xbrl-element at least one schemaRef-attribute should be included.
- Then a number of linkbaseRef, roleRef and arcroleRef attributes can be

included.
- Items and tuples can be included, which will contain the actual data of the

financial report. Item and tuple are abstract elements, so they will not actually
be used in an instance, but be replaced with other elements.

- Context, unit and footnotes can be included.

As mentioned earlier, an elaborate description of these elements can be found in
the previous parts.

Third, the XBRL-schema defines data types which can be used in the factual
elements of an instance. For example: periodType, balance, monetary and shares.

Figure 3 – Basic structure of an XBRL-instance

Transforming XBRL into an OWL ontology 50

5.2. ISO-4217

This namespace is used for containing the currency codes as specified by ISO
(International Standards Organisation). The namespace is called:
“http://www.xbrl.org/2003/iso4217”. These currency codes are needed since for
facts concerning money need it is necessary to specify in which currency the
money is presented.
The schema containing the definitions for this namespace could not be found.

5.3. Linkbase

The Linkbase-namespace, usually given the alias “link”, is meant for describing
how linkbase elements can be made in an XBRL-instance document. The name of
this namespace is: “http://www.xbrl.org/2003/linkbase”. See paragraph 3 for an
elaborate description of linkbases. The schema which belongs to the linkbase-
namespace for XBRL 2.1 is: “http://www.xbrl.org/2003/xbrl-linkbase-2003-12-
31.xsd”.

The general structure of a linkbase element is presented in the following figure:

Figure 4 – Structure of the Linkbase-element

Transforming XBRL into an OWL ontology 51

http://www.xbrl.org/2003/iso4217
http://www.xbrl.org/2003/linkbase
http://www.xbrl.org/2003/xbrl-linkbase-2003-12-31.xsd
http://www.xbrl.org/2003/xbrl-linkbase-2003-12-31.xsd

Transforming XBRL into an OWL ontology 52

5.4. XLink

XLink is a W3C recommendation as of June 27 2001. The recommendation is a
specification for how to construct links between XML-instances. Since the
specification lacked some features needed for XBRL, an XBRL-specific extension
was made. The name of the namespace is: “http://www.w3.org/1999/xlink”. The
XBRL 2.1 schema concerning this namespace can be found at:
“http://www.xbrl.org/2003/xlink-2003-12-31.xsd”.

5.5. XMLSchema-instance

An XBRL-instance document can make a reference to a schema in two ways: by
using the schemaRef-element, which is specifically made for XBRL (see chapter
4.2) or by using the W3C standard for XML Schema’s. It can also do both, but then
the referenced schema’s should match to prevent errors from an XML parser when
the instance document is parsed. When referencing a schema in the conventional
way, using the W3C recommendation, it is necessary to use the XMLSchema-
instance namespace. The schema relating to this namespace defined how the
schema should be referenced, so a parser can understand the reference.

The name of the XMLSchema-instance namespace is:
“http://www.w3.org/2001/XMLSchema-instance”. The schema for this namespace
can be found at: “http://www.w3.org/TR/xmlschema-1”.

5.6. US-GAAP

The namespaces in the previous paragraphs are generally applicable for XBRL and
used in virtually all XBRL DTS’s (Discoverable Taxonomy Sets). The US-GAAP
namespace is a special namespace for defining how an XBRL-instance document
should be structured to adhere to the US GAAP accounting rules.

Since different sets of accounting rules exist, also different DTS’s exist which relate
to this accounting rules. XBRL International recognizes two types of taxonomies
(taxonomy sets): approved and acknowledged. The approved taxonomies adhere
to the XBRL specification and the XBRL Guidelines. The acknowledged taxonomies
only adhere to the XBRL specification. Besides these taxonomies also a GL-
taxonomy exists, which is a general taxonomy. This taxonomy is meant as a base
for internal reporting or as a base for constructing specific taxonomies such as US
GAAP.

http://www.w3.org/1999/xlink
http://www.w3.org/1999/xlink
http://www.xbrl.org/2003/xlink-2003-12-31.xsd
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/TR/xmlschema-1

Transforming XBRL into an OWL ontology 53

To give an idea of existing taxonomies, the following taxonomies are approved by
XBRL International:

- US GAAP - Commercial and Industrial
- US GAAP - Banking and Savings Institutions
- US GAAP – Insurance
- US GAAP - Investment Management
- SEC Certification
- Management Report
- Accountants Report
- MD&A

Paragraph 2 contains more information about taxonomies.

5.7. Overview

To give a quick graphical overview of the myriad of documents, taxonomies,
instances, namespaces and schemas, we’ve developed a cheatsheet listing the
important entities within XBRL.

Figure 5 – The cheatsheet

Transforming XBRL into an OWL ontology 54

Transforming XBRL into an OWL ontology 55

6. XBRL supporting documents

6.1. FRTA
The Financial Reporting Taxonomy Architecture (FRTA) is a document published by
the XBRL International Consortium. It recommends architectural rules and
proposes conventions that assist authors in creating taxonomies. It is aimed at
creating documents that give better performance with processors that can be used
among different financial reporting taxonomies.

6.2. FRIS
The Financial Reporting Instance Standards (FRIS) is also published by the XBRL
International Consortium. This document is intended to complement the FRTA
document. It aims to facilitate the analysis and comparison of XBRL financial
reporting data by either processors or humans. These financial documents are
intended to satisfy financial reporting standards and accounting principles. The
FRIS is not intended for use on other types of documents, like journal-level
reporting or narrative reports and other non-financial data.

Transforming XBRL into an OWL ontology 56

IV. A short overview of NTP

1. Introduction

This chapter tries to shed some light into the dark world that to some is known as
the NTP-project. NTP stands for ‘Nederlands Taxonomie Project’ (Dutch Taxonomy
Project) and it’s homepage can be found at http://www.xbrl-ntp.nl.
This foundation has been set up to create a taxonomy to be used by the
organizations which have to pay taxes in the Netherlands, this taxonomy enables
them to send their information to the tax authority (‘Belastingdienst’) and the
chambers of commerce (‘Kamers van Koophandel’ abbreviated to ‘KvK’).

We will explain the basic setup of the NTP, give an introduction to the NTP and it’s
organization and will eventually get to grips with a report to show it in more detail.

Transforming XBRL into an OWL ontology 57

2. NTP

XBRL, as we all know, tends to get managers pretty excited about it’s potential and
the possibilities of it. Coherent and standardized reporting throughout all
businesses and markets, both locally and globally, it sounds too good to be true.
Unluckily, this seems to be the case, although not completely.

Recent studies on the amount of money that can be saved when XBRL is utilized at
it’s fullest potential show savings up to 350 million Euro for the Dutch government,
while the administrative burden on companies in the Netherlands should be
lowered by about 25 percent which roughly equals 4 billion Euro each year as of
2007.
So far, so good. The Dutch government has legally ordained all companies in the
Netherlands to electronically send their information in an XBRL-document to both
the tax authority (‘Belastingdienst’) and the chambers of commerce (‘Kamers van
Koophandel’ abbreviated to ‘KvK’). As of now only very few have already handed in
their information in this format due to several reasons, of which the most
interesting is stated below.
There have been complaints about XBRL being too hard to understand and,
ironically, the high costs which come with the successful transformation of the
company-information into XBRL.

As XBRL is eXtensible, quite a few extensions have been created. A very big and
dominant addition has been the creation of the IFRS-standard. ‘International
Financial Reporting Standards’ are the standards companies in the US, Europe and
Russia have to adhere to when creating reports for instances like the tax authority
or the stock-exchange authority.
This IFRS-standard is very large as it has to accommodate all possible firms in all
possible countries, languages and jurisdictions. Quite a few countries have
therefore devised their own taxonomies, in the Netherlands this is NTP.
NTP stands for ‘Nederlands Taxonomie Project’ (Dutch Taxonomy Project) and uses
the IFRS-standard as building blocks to create reports and taxonomies specifically
designed for firms housed in the Netherlands, completely adhering to the Dutch
law and several other specific requirements.

The following chapter will elaborate more on the building blocks and the structure
of the NTP, and how IFRS is being used to create ‘scoped’ reports.

3. Basic structure

The NTP is created for three different situations. These three branches of the NTP
taxonomy are focussed on the Chamber of Commerce, the Dutch Tax authority and
the Dutch Statistical Bureau. Each of these focuses have their own implementation
in NTP. Further is the NTP build upon the existing XBRL representation of the
Accounting standards of IFRS that are imported into NTP. NTP is thus an extension
of XBRL.

The Dutch Taxonomy created in the NTP consists of three stages. The first being
the ‘Basis’ consisting of accounting standards like i.e. IFRS in XBRL that are
through this basis layer being imported. The second being the ‘Domein’ in which,
per domain from the three of the aforementioned branches of the NTP Taxonomy,
the relations between the elements on the annual account and the to be published
report are presented. The third stage is the 'Report' level in which the different to
be published posts are defined for the Chamber of Commerce, the Dutch Tax
authority and the Dutch Statistical Bureau.
The basic structure of the NTP taxonomy can be better understood with the use of
the following image from ‘Reducing administrative burdens through
standardisation’. In this image the complete architecture of this Taxonomy is
represented from the basis, importing e.g. the IFRS on the bottom layer to the
report layer on top.

Figure 1 – A schematic view of the NTP

Transforming XBRL into an OWL ontology 58

In the second figure (below) a more abstract view of the architecture of the NTP is
given. This image shows the basis layer with e.g. IFRS, with on that three pillars of
the 'CBS', 'KvK' and 'bd', each having their own 'domein' and formsets to come to
the reports.
Because these images do not fully reflect the representation of the NTP, we will in
the next pages examine a NTP report in more detail.

Figure 2 – A more abstract view of the NTP

Transforming XBRL into an OWL ontology 59

Transforming XBRL into an OWL ontology 60

4. Examining an NTP-report

In this paragraph we will take a closer look at one of the reports that is being used
within the NTP. It has no specific name, but is referenced to as ‘rpt-kvk-balansd-
2006.xsd’.
As can be concluded from the name of the file, this is a report belonging to the
KvK-formset and displays the balance. This balance is defined in 2006.
This report is actually the most commonly used report as it is especially intended
to be used by small companies (1 to 10 employees) to report their balance to the
‘kvk’.

The NTP consists of several ‘packages’, each consisting of vital parts to the
complete NTP-taxonomy. When taking a closer look at the complete NTP-package,
it is clearly divided into 3 main areas: ‘basis’, ‘domein’ and ‘report’. These can be
translated into Basis, Domain and Report.
Each area has several subcategories, for which the subcategories for Domain and
Report are the same. These are: ‘kvk’, ‘bd’ and ‘cbs’, and are abbreviations for the
chambers of commerce, tax authority and statistics bureau respectively.
Basis consists of more subcategories, all either linking to other resources such as
the IFRS-taxonomies or specifying reusable content such as common elements
(Strings, monetaryTypes and so on. Please refer to the known literature for further
explanation of these elements.)

The ‘kvk’ sub-directory of Domain is also set up with several subcategories,
‘common-data’, ‘rj’ and ‘formsets’. The latter is the most interesting as it was
created to tackle a major problem in XBRL and XML: how to exclude items from
being automatically inherited in an import.
Every time a schema is imported into another all elements become part of the
Discoverable Taxonomy Set (DTS) and can be used in any schema or taxonomy
importing this first schema. Most of the time this behaviour is intended and comes
in really handy, but sometimes the author of a taxonomy would like to restrict
access to some elements of another taxonomy as of possible reuse of the intended
subjects or various other reasons.
XML and thus XBRL has no neat way of excluding elements or complete
namespaces; when a single element or namespace is imported it can be used
throughout the ‘child-taxonomies’.

The NTP has come up with quite an interesting solution to this by creating so called
formsets. A formset is a small and specific import of several elements and/or
namespaces in order to leave all unused elements out of the scope.
A small example is posted below.

This snippet of code is taken from the formset directly belonging to the report
we’ve chosen to elaborate on. The code clearly shows one element (“ifrs-
gp_AssetsNonCurrentTotal”) being imported and related to in a presentationArc.
The file we’ve quoted from is filled with imports such as these, 35 in total.

 <loc xlink:href="http://xbrl.iasb.org/int/fr/ifrs/gp/2005-05-15/ifrs-gp-2005-05-

15.xsd#ifrs-gp_AssetsNonCurrentTotal" xlink:label="ifrs-gp_AssetsNonCurrentTotal"

xlink:type="locator"/>

 <presentationArc order="4" preferredLabel="http://www.xbrl.org/2003/role/label"

use="optional" xlink:arcrole="http://www.xbrl.org/2003/arcrole/parent-child"

xlink:from="ifrs-gp_AssetsNonCurrentPresentation" xlink:to="ifrs-

gp_AssetsNonCurrentTotal" xlink:type="arc"/>

Example 1 – Snippet from fs-kvk-balansd-2006-presentation.xml

By just importing the 35 elements, the remainder of elements can be ignored so to
speak by the XBRL-interpreter which makes up for two things: faster processing
and easier creation and validation of an instance.
Unfortunately, the NTP taxonomies don’t utilize this approach to the fullest as not
only references to the formsets are used, the entire IFRS-taxonomy is also
imported in a previous stage.
This way the DTS not only consists of the needed elements, but it also has all
elements in it, 5488 in total; rendering the quite clever way of using the formsets
as filters useless.

Without going too deep into details of this one report, we would like to point out
the very modular way of constructing a taxonomy. Each and every taxonomy
builds upon a taxonomy previously defined, be it by the IFRS, the NTP or US-
GAAP: all are being used as building blocks for other taxonomies.
This is the strength of XBRL, and probably the reason why it will fail to be very
successful; it’s versatility will also be it’s doom. As the taxonomies get to a lower
level of inheritance, the intricacy of the taxonomy increases too. At some point it
will overwhelm the proposed user with information, rendering him or her helpless
and ultimately leading to the user not using XBRL.
In the Netherlands, companies are obliged to use XBRL for all external reporting to
official organizations but we feel the user-unfriendliness will not invoke an
immediate desire to also do internal and other external reporting in XBRL with the
company.

We’ve added two images of the report below, one in Dutch and one in English.
We’ve added both of them to show how easily the language can be switched as
information about both languages is provided in the ‘label’-linkbase.
This linkbase holds all element-names and provides the presentation-linkbase with
all needed languages and alternative names.

The images below have been created using the Taxonomy Viewer, as created by
Semansys.

Transforming XBRL into an OWL ontology 61

Figure 3 – The ‘rpt-kvk-balansd-2006.xsd’ in Dutch

Figure 4 – The ‘rpt-kvk-balansd-2006.xsd’ in English

Transforming XBRL into an OWL ontology 62

Transforming XBRL into an OWL ontology 63

Returning to the topic of formsets, a formset is actually a mini-taxonomy which
imports several (small) namespaces, but has also a presentation-linkbase linked to
it. This linkbase is the linkbase we’ve quoted from in example 1, and is the one
responsible for the actual selection of the needed elements.

This added level of imports does not make XBRL easier, it just adds to the intricacy
of XBRL in general and specifically the NTP. We couldn’t help noticing the amount
of work to be done to gain a sufficient level of knowledge about XBRL to use it in a
meaningful way.
As all firms in the Netherlands need to do all external reporting with XBRL-
documents within the next few years, a lot of knowledge will have to be exchanged
for them to grasp what they are doing. Due to the way XBRL was designed, this
amount of knowledge to report in XBRL is quite low, as most of the work in
reporting is just filling in the fields in an XBRL-instance, not creating entirely new
taxonomies or editing them to fit your organization perfectly.
However, we foresee a large market in XBRL-consulting and a lot of new, small
companies assisting large companies in making the change to both internal and
external reporting in XBRL.

Transforming XBRL into an OWL ontology 64

V. Ontologies, RDF and OWL

1. Introduction

The goal of this paragraph is to give the reader a basic understanding of the Web
Ontology Language (OWL) and the concepts, languages and standards surrounding
this language. After reading this section and the previous paragraphs about XML
and XBRL, the reader understands enough of XML, XBRL and OWL to begin
exploring how these techniques can be brought together for creating ontologies
about business reporting.

This section is structured as follows: paragraph 2 contains an introduction to the
Semantic Web, a new form of our currently known World Wide Web. Then
paragraph 3 contains information on ontologies, paragraph 4 is about RDF and
RDF-Schema and paragraph 5 delves into the details of OWL.

Transforming XBRL into an OWL ontology 65

2. Semantic Web

The Semantic Web is a concept which is used to identify a new form of the
currently existing World Wide Web. The current World Wide Web is mainly only
human-understandable: humans can read a Web document and understand its
contents. For example: a product catalogue page of Amazon.com; a human
understands that the page contains names of books, with their description, price
and shipping time. He also knows that a book consists of pages, is written by one
or more authors, that the price can be stated in euros or dollars, etc. Computers
cannot understand this: they can only “see” that one page links to another page
(or media file) and present us with a link. Also the way a computer lets us find
information on the World Wide Web is fairly basic: it crawls all pages, creates an
index of the content and lets us search through them using some keywords.
Although the search algorithms used today are fairly advanced, they are no match
for the understanding capabilities when a human reads through the documents
(though much slower of course).

This is where the Semantic Web can help: it provides a means to let computers
“understand” the meaning (= semantics) of information. This “understanding”
should not be thought of as very advanced though: the meaning of one piece of
information (subject) is described with typed properties (predicate) to other pieces
of information (object). Together all these subjects, predicates and objects create a
web through which a computer can find his way: a Semantic Web. Think of a
Semantic Web as the World Wide Web with all its documents and hyperlinks linking
to each other, but then the hyperlinks are typed: instead of just linking the
meaning of the link is also given and the links are not between documents, but
between much smaller bits of information, namely subjects (the concept something
is stated for) and objects (the related concept).

Since a computer cannot really understand and learn the way humans can, it has
to be told first how certain types of subjects and objects (classes) can relate to
each other. For example, it has to be told that a city contains many streets and zip
codes and that these together, with a street number added, can form an address.
And that a difference can be made between postal and home addresses, and that it
makes no sense to send a pizza delivery to a postal address, and so on and so on.
Together these descriptions of how things are related to each other and inherently
what they mean are called Ontologies. These ontologies are discussed in chapter 3.

So in a Semantic Web computers can now search through great amounts of data
and understand the meaning of the data, by using an ontology. Ontologies can also
be linked together to create even larger ontologies. Since an ontology will always
deal with a certain limited domain of concepts, no ontology will be complete or true
for everyone. But when used (alone or combined) they can provide us with more
relevant information than a traditional search engine on the traditional World Wide
Web ever could.

Transforming XBRL into an OWL ontology 66

Since a computer can understand the data much better now than was possible
before, it can do much more intelligent search work for us. For this the concept of
an “agent” is introduced: this is a piece of software that takes a complex question
or request from a human and goes on its way through the Semantic Web to find
the best result. For example a question like: “I would like to buy an introductionary
book about politics, should cost me no more than 40 euros, have good reviews of
recognized book reviewers and be delivered within two days.” The words in italic
are concepts the agent should understand: know the relationship to other concepts
and what this relationship is. Using (combined) ontologies and some form of
intelligence (reasoning) of its own the agent could figure out that books can be
bought, has one or more subjects, has a price for which a limitation is given and
has reviews by reviewers who can have a better or worse reputation (synonym for
recognized). The agent also has to figure out that another limitation is given about
the book to be bought, namely that it should be delivered within two days. When
the agent “understands” the request it is given, it can now go searching through
the Semantic Web to find the best available match and present it to the user (the
human).

Transforming XBRL into an OWL ontology 67

3. Ontologies

As mentioned in the previous part, ontologies represent a dataset of concepts
within a certain domain and all the relationships between those concepts. Because
of the linkage between the concepts it becomes possible to reason with this
information. This chapter describes the elements of an ontology and the basic
layout.

An ontology consists of a few basic elements, these are instances, concepts (also
known as classes), attributes and relations. An ontology with a set of individual
instances and classes is known as a knowledge base. You may argue that the
ontology could also contain these instances and classes. There are no real rules
that tell when something should be called an ontology and when it becomes a
knowledge base. We will focus on the ontology and its elements.

3.1. Instances
The instances form the basis of an ontology, they are the lowest components
available within an ontology. These instances are real-life objects, such as a car or
a person or animal, but also abstract objects like a word or a number.

3.2. Concepts
The next component in an ontology is a concept. This is an abstract collection of
instances, concepts or both. Because a concept can contain another concept things
can get very vague and complicated, it is even possible for a concept to be part of
its own concept. To prevent these kinds of complications it is possible to have
restrictions in place, enforcing a concept to only consist of instances or only other
concepts.

A concept can be subsumed by another concept or it can subsume another concept
itself. This property is useful, because of this it is possible to create a hierarchy
within the concepts. For example, “building” subsumes “floor” because everything
that is a member of the floor concept must also be part of the building concept.
Partitions are used to determine where an instance goes within the ontology. A
partition is a set of concepts and rules, if these rules determine that an instance is
places in one concept alone it is a disjoint partition. If the rules ensure that every
object in the upper class is an instance of at least one of the partition classes the
partition is an exhaustive partition.

Figure 1 – Concept subsuming

This example is a part of a construction ontology, the floor concept is a
construction element and concrete is part of the floor. Because of the hierarchy,
concrete is also a construction element.

3.3. Attributes
Every instance in an ontology can have attributes assigned to it. These attributes
describe what the instance is, specific information about the instance is captured in
the ontology in this way. The attributes must have a name and a value, this value
can be a simple type (a string or integer) but also a complex type. Because of this,
a single attribute can have multiple values captured in a list for example. A simple
example from the construction ontology might be a specific type of window.

Name = Special Insulating Glass

Tint = light blue

Number of panes = {3,4,5}

Width = 3200 mm

Height = 1800 mm

Example 1 – Attributes example

This type of glass, Special Insulating Glass, has a light blue tint with a fixed size of
3200 by 1800 millimetres. It is available with 3, 4 and 5 panes for added
insulation. Because of these attributes within an ontology, reasoning applications
can find the right type of window for every application.

Transforming XBRL into an OWL ontology 68

3.4. Relations
The attributes of instances are also used to describe relationships between
instances. The most used relationship is an attribute with another instance as its
value. To stay with the window example, one attribute might be “Next size = Large
Special Insulating Glass”, pointing to another instance with that name. That
instance should be a window with a bigger size than the current one. By using this
kind of references to other attributes, the semantics of the domain are being
described. One giant web of related instances is the final product.
The subsumption as described in paragraph 3.2 is also a very important part of the
relationships between instances. This defines which instances are part of concepts
and where they are located in the ontology.

Figure 2 – Subsumption

Both the Special Insulating Glass instance is a window and the Large Special
Insulating Glass is a window, which in turn is a construction element. Since we
created this small example, it is not hard to see the relationships. In a large
ontology, there are too many relationships to oversee. Besides this child-parent
relationship, ontologies can contain another kind of relationship. This is the
meronymy relation, instances can be part of another instance while together they
form a new composite instance. For example, insulating rubber can be part of the
Special Insulation Glass. Domain-specific relationships are also common within
ontologies but these are, hence the name, domain-specific. It is impossible to
describe all these type of relationships. It suffices to say that all these relationships
are there to further capture the semantics of the ontology. In our example, we
could add that the glass from the Special Insulation Glass type window is created
in Rotterdam, this is in turn part of the Randstad which is located in the
Netherlands. These kinds of relationships can go on almost indefinitely. Because of
this it is possible for reasoning software to answer a question like ‘which windows
are composed with glass from the Netherlands, wider then 3000 millimetres’.

Transforming XBRL into an OWL ontology 69

4. RDF and RDF Schemas

This paragraph will discuss the basis on RDF and RDF Schemas. To fully grasp all
concepts discussed in the following part, we advise the reader to have read the
previous chapters, or to be familiar with XML and XBRL.

4.1. RDF

As RDF is shorthand for “Resource Description Framework” it is built on the
fundamentals of XML and tries to provide a generic framework to describe various
resources on the web.
To accomplish this, a RDF-file consists of one or more “resources”, which are given
between the <rdf:RDF> and </rdf:RDF> tags.

A RDF-document was not intended to be read by humans, it tries to enable
computers and programs to read and truly understand what the contents of the file
are by supplying some additional metadata together with the resource itself.

An example RDF-file is like the following:

<?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

.

. Resources go here

.

</rdf:RDF>

Example 2 – The RDF document definition

The underlying structure of any expression in RDF is a collection of triples, each
consisting of a subject, a predicate and an object. A set of such triples is called an
RDF graph. This can be illustrated by a node and directed-arc diagram, in which
each triple is represented as a node-arc-node link (hence the term "graph").

Figure 3 – The RDF relationships

Each triple represents a statement of a relationship between the things denoted by
the nodes that it links. Each triple has three parts:
A subject, an object, and a predicate (also called a property) that denotes a
relationship.

The direction of the arc is significant: it always points toward the object.

Transforming XBRL into an OWL ontology 70

The nodes of an RDF graph are its subjects and objects.

The assertion of an RDF triple says that some relationship, indicated by the
predicate, holds between the things denoted by subject and object of the triple.
The assertion of an RDF graph amounts to asserting all the triples in it, so the
meaning of an RDF graph is the conjunction (logical AND) of the statements
corresponding to all the triples it contains.

4.1.1. Resources
A resource in a RDF-document is defined by the use of the tag <rdf:Description>.
Every resource consists of a namespace in the rdf:about attribute and zero or more
other attributes and properties. Every attribute has its attribute-value, and every
property has its property-value.
Reconsidering the XML-document we mentioned earlier, the DVD example can be
reused to be displayed in RDF.
However, as RDF focuses more on several items, we will add another DVD.

This example uses only elements as properties of the DVD, the properties can also
be given as attributes of the <rdf:Description>-tag. The latter is not recommended
as of the lesser ease of navigatability.

<?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:dvd="http://www.dvdshop.edu/dvd#">

<rdf:Description rdf:about="http://www.dvdshop.edu/dvd/Lock, Stock and Two Smoking

Barrels">

 <dvd:director>Guy Ritchy</dvd:director>

 <dvd:country>USA</dvd:country>

 <dvd:language>English</dvd:language>

 <dvd:price>10.99</dvd:price>

 <dvd:year>1998</dvd:year>

</rdf:Description>

<rdf:Description rdf:about=" http://www.dvdshop.edu/dvd/Le Transporteur II">

 <dvd:director>Louis Leterrier</dvd:director>

 <dvd:country>France</dvd:country>

 <dvd:language>English</dvd:language>

 <dvd:price>14.99</dvd:price>

 <dvd:year>2005</dvd:year>

</rdf:Description>

</rdf:RDF>

Example 3 – The DVD’s in RDF

Transforming XBRL into an OWL ontology 71

http://www.dvdshop.edu/dvd/Le

The extensibility is greatly enhanced by the next feature: a resources property can
also be a resource. This way, a property can point to another resource (somewhere
else) on the web, and be described more precisely, or described evenly throughout
all resources.

<rdf:Description rdf:about="http://www.dvdshop.edu/dvd/Lock, Stock and Two Smoking

Barrels">

 <dvd:director rdf:resource="http://www.dvdshop.edu/dvd/Guy Ritchy" />

 <…>

</rdf:Description>

Example 4 – A resource as property

4.1.2. Containers
When a property has more that one possible value, for instance the genres of a
DVD, they cannot be given the same way all other property-values are given, as a
property has to be unique within a resource.

To overcome this problem, a container has been introduced. A container is simply a
small collection of values which can be regarded of as either ordered or unordered.
Three different types of containers have been defined in the RDF-definition: Bag,
Seq and Alt.

The following table lists the aspects of the container-types.

 <rdf:Bag> <rdf:Seq> <rdf:Alt>
Ordered No Yes No
Duplicates Yes Yes No
Table 1 – Container-types

Note: a container only lists the elements that are there, it doesn’t list the elements
not allowed or the element that are not part of the container. This is, like XML, all
done in the attached schema.

4.2. RDF Schema

Unlike XML Schema where the schema is used to present the data in a readable
fashion to humans, RDF Schema intends to show data in a knowledge
presentation. RDF Schema provides basis elements for the description of ontologies
(a being described in the previous chapter), otherwise called RDF vocabularies.

While an XML Schema is only a derivative of XML, a RDF Schema is more closely
bound to RDF itself and uses several of RDF’s main building blocks.

Transforming XBRL into an OWL ontology 72

Transforming XBRL into an OWL ontology 73

4.2.1. Classes and subclasses
In a RDF Schema groups of different resources may be separated and identified by
the declaration of a class of resources. Members of a class are known as instances,
which is not to be swapped with the term instance from XML.

As an example of an instance, please think back of the glass panes mentioned in
paragraph 3. Special Insulating Glass and Large Special Insulating Glass are both
instances of the class Window; but to make things more complicated they are also
children or subclasses of the class Window.

The actual window used in construction of the house is the instance of the class
Window. What type it is, is not relevant in this case.

RDF distinguishes between a class and the set of its instances. Associated with
each class is a set, called the class extension of the class, which is the set of the
instances of the class. Two classes may have the same set of instances but be
different classes.
A class may be a member of its own class extension and may be an instance of
itself.

A class is identified with the <rdfs:Class>-tag, and a subclass is depicted with the
<rdfs:subClassOf>-tag. All resources being an instance of the subclass C, which
has C’ as it’s parent, are also instances of C’; yet this doesn’t hold the other way
around with one exception: if a class C' is a super-class of a class C, then all
instances of C are also instances of C'. The latter is very uncommon though.

All things described by RDF are called resources, and are instances of the class
rdfs:Resource. This is the class of everything. All other classes are subclasses of
this class. rdfs:Resource is an instance of rdfs:Class.

Two other types have also been defined:

• rdfs:Literal is the is the class of literal values such as strings and integers.
• rdfs:Datatype is both an instance of and a subclass of rdfs:Class. Each

instance of rdfs:Datatype is a subclass of rdfs:Literal.

4.2.2. Domain and range

Two tags are defined to represent the domain and range of resources in an RDF
Schema, rdfs:domain and rdfs:range. rdfs:domain of an rdf:property declares the
class of the subject in a triple using this property as predicate.
rdfs:range of an rdf:property declares the class or datatype of the object in a triple
using this property as predicate.

Transforming XBRL into an OWL ontology 74

5. OWL

5.1. What is OWL?
As mentioned earlier in this paper, Ontologies are used to capture knowledge about
some domain of interest. The Web Ontology Language, atypically abbreviated to
OWL, is a language to represent such Ontologies. OWL extends existing web
standards like XML (see the previous paragraph I), RDF and RDF Schema (see
previous parts) and is represented into three species. The first being the OWL Lite,
second OWL DL an extension of OWL Lite and last OWL Full a full union of RDF in
the OWL syntax.

5.2. Build-up of an OWL Ontology
An OWL Ontology consist of Individuals, Properties, and Classes. This terminology
can be matched with that as we previous mentioned in the paragraph about
Ontologies.

5.2.1. Individuals
Individuals can be matched with the Instance element as explained in paragraph 3.
Individuals are in OWL the representation of elements that we, as builders and/or
users of the OWL Ontology, are interested in. In OWL there is a possibility to give
different names to the same individual. In the DVD example the individual of the
DVD “Le Transporteur II” can have the name “Le Transporteur II” as well as “Le
Transporteur 2” linked to it. In this situation there must be explicit stated that
individuals are the same as each other, this is obligated in OWL as is the situation
where individuals are different to each other.

5.2.2. Properties
Properties are the relations between two individuals. An property “hasDirector”
might link the individual “Lock, Stock and Two Smoking Barrels” with the individual
“Guy Ritchie”, or a property spokenLanguage might link the individual “Le
Transporteur II” with the individual “English”. Properties can have inverse
appearance, so can the individual “Guy Ritchie” also be linked to “Lock, Stock and
Two Smoking Barrels” with the property “hasDirected”. The properties element in
OWL can be linked with that of the relations as explained in paragraph 3.

5.2.3. Classes
In OWL Classes, comparable with the Concepts element in the Ontologies Chapter,
sets of individuals are represented. These representations are given in formal
mathematical descriptions. In the OWL-DL representing form of OWL, super-sub
class relationships can be computed automatically by a reasoner when a correct
form of Description Language, hence the name OWL-DL, is being used. So can be
presented that all movies made by the individual “Guy Ritchie” are in “English”.

5.3. OWL RDFS Syntax
For the representation of OWL RDF Schemas as explained in paragraph 4 can be
used. In the following example presented will be the class link as mentioned
previous in which is linked that all movies that are made by Guy Ritchy are spoken
in English.

<owl:Class>

 <owl:intersectionOf rdf:parseType="collection">

 <owl:Class rdf:about="#Movie"/>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#hasDirector"/>

 <owl:toClass>

 <owl:unionOf rdf:parseType="collection">

 <owl:Class rdf:about="#Guy Ritchie"/>

 <owl:Restriction>

Example 5 – Part 1 of a RDFS

Here in the first part is mentioned that a restriction is made on all the movies that have as

Director Guy Ritchie.

 <owl:onProperty rdf:resource="#spokenLanguage"/>

 <owl:hasClass rdf:resource="#English"/>

Example 6 – Part 2 of a RDFS

The Restriction is that the spoken language in the movie must be English.

 </owl:Restriction>

 </owl:unionOf>

 </owl:toClass>

 </owl:Restriction>

 </owl:intersectionOf>

</owl:Class>

Example 7 – Part 3 of a RDFS

In the OWL different constructs are available for use. A summary on those
constructs is presented by the W3C on their website (http://www.w3.org/TR/owl-
features/).

Transforming XBRL into an OWL ontology 75

Transforming XBRL into an OWL ontology 76

VI. Transforming XBRL into OWL: towards a
useful Ontology

1. Introduction

As was already concluded in the previous chapters the NTP taxonomies and how
XBRL has been used in general has some important disadvantages: the taxonomies
have become very complex in nature; layer upon layer is built by including,
extended, generalizing and more of the like. It is not possible for a human
anymore to get a grasp what a single taxonomy encompasses and how it is
structured, since it most of the time consists of thousands of elements, distributed
among several tens of files.

Since ontologies are a way to represent information and their relationships in a
human understandable way and at the same time let computers also understand it
(see chapter V.3), an ontology knowledge base containing business reporting
information may be very useful.

This paragraph elaborates on our attempt to transform XBRL into a useful ontology
which can contain information on organizations typically found in external business
reports.

The next paragraph describes the goals and boundaries we had in mind for
constructing the ontology. Then the ontology is presented, followed by a
description on its construction process and some detailed decisions that were
made. After that some issues and open questions are described, followed by a
description of the tools we used for creating the ontology and how we used them.

Transforming XBRL into an OWL ontology 77

2. Goals and boundaries

When constructing the ontology the following goals and boundaries were kept in
mind:

- don’t make the ontology overly complex and generic
- don’t forget to think of an application of the ontology
- started off easy and build up from there
- for an Ontology-based knowledge base to be successful, it should be

reasonably simple, useful and extendible

3. The ontology and how it is constructed

The following pages contain the various parts of our ontology. The OWL-file
containing the ontology can be obtained from the authors.

Transforming XBRL into an OWL ontology 78

Transforming XBRL into an OWL ontology 79

Transforming XBRL into an OWL ontology 80

Transforming XBRL into an OWL ontology 81

The process for constructing this ontology and the decisions made along the way
are:

- We started off with a very simple taxonomy: the Digiforce example and
translated it to an ontology by hand.

- This Ontology we then discussed and extended with more concepts and also
some instances.

- Since we wanted to work towards a usable, simple but extendable ontology
we decided that taking a simple taxonomy from the NTP ([Nederlandse
Taxonomie Project], 2006 Oct 17) was a good idea: at this moment the way
to get information on companies from the KVK is to purchase separate
business reports from the website. What if all reports were loaded into one
knowledge base: would this be helpful? Would it lead to a useful base of
information, extracting new information previously unseen? Without specific
applications in mind, we thought that it probably would.

- The taxonomy of choice has become "Balans D 2006" from the KVK
(Chamber of Commerce) reports, which contains amongst others a simple
presentation linkbase for a balance sheet. The balance sheet consists of 35
elements.

- The items which should be included in the report are all items specified on a
more general level in included taxonomies, including IFRS and Dutch
legislation. The report structure itself is specified as a presentation linkbase
in the report taxonomy. This let us to reason that generally speaking all
item specifications which could be included in a report are specified on a
more generic level, overlapping various reports and that the report itself is
just a set of these items demanded by a certain party.

- This let to a split of the ontology in two main parts: a generic part
containing balance item specifications in a parent-child hierachy and a
specific part containing a class specifying which items should be present for
a report.

- For the generic part a class for each element was created (Assets, Non-
current Assets, Liabilities, Equity etc.), changing their name to a more
meaningfull one if necessary.

- The parent-child hierarchy is comparable to the presentation link structure
in the taxonomy. Extra levels of classes were added, if this would give more
information to a user.

- To keep the ontology simple and logical, the complex item types were not
created (such as MonetaryItemType), since this will confuse the user.
Instead simple datatypes are used to contain values or indicate how many
decimals are used. This does produce some redundancy, but will make the
ontology much more readible.

- The specific part currently contains only one report: KvkBalansD2006 which
contains all the items which should be present according to the presentation
linkbase of the chosen NTP taxonomy. Some parent classes are added to
identify how additional report classes can be added in the future.

Transforming XBRL into an OWL ontology 82

Besides the general process description above, some detailed technical choices we
made in the ontology:

- From the taxonomy it became appearant that Equity and Liabilities can
contain three types of items: Equity, Liabilities and Provisions. For this
reason three child classes were made, while nog changing the name of the
parent class. The latter was done since the term “Equity and Liabilities” is
generally accepted for that item.

- Total monetary values are stored in the knowledge base, for example: the
value of an Assets instance should be the total of the value of the instances
of AssetsNonCurrent and AssetsCurrent for a specific report instance.

- Plural class names are used as is customary in business reports, so “Assets”
instead of “Asset”, since an instance of the class will contain the value of all
assets, not just one.

- The “context” item from XBRL is not used. Instead an instance of a child
type of the Period class should be related to a report instance. The same
holds for currency: a Currency instance (Dollar, Euro) should be related to a
report instance to indicate the currency the report is in.

- It is possible to define a complete parent-child hierarchy of all possible
items in a business report by defining all parts as “items” from the top
down. If this was not done, it would not be possible to add arbitrary report
classes in the future without rendering generic classes incomplete or
obsolete.

Transforming XBRL into an OWL ontology 83

4. Issues and open questions

The next step for developing the ontology would be to add numerous instance
reports in order to create a knowledge base. This knowledge base should then be
queried and explored to determine if it is possible to extract new and interesting
information which could not be retrieved previously from existing databases and/or
applications. This exploration will probably result in new insights into the
knowledge base’s uses, possibilities and shortcomings, leading to development of
new versions of the ontology. Over time the ontology and knowledge base can then
lead to a new source of information.

During the construction of the ontology the following issues and open questions
were raised, which should be addressed in the future:

- It was reasoned that a tool using the ontology would be sophisticated
enough to determine the structure of a report instance (instance of
KvkBalansD2006) from the parent-child hierarchy of its items. But will this
be the case? If not, then a different class structure should be made.

- Should a class property be added to the generic classes to indicate their
parent instance? This question relates to the previous one: it was reasoned
that a tool would be able to group all instances belonging to a report based
on the fact that they are related to a single report instance. If this is not the
case, then adding a parent property may be a solution.

- Does a generic structure of items hold when the ontology is extended for

use by other reports and parties? Or does this create inconsistencies? These
are important questions for the general use, possible usage and continued
simplicity of the ontology.

Transforming XBRL into an OWL ontology 84

5. Tools used for constructing the ontology

In order to display the XBRL files in a more understandable way, we used two
different tools. The Semansys Taxonomy viewer is a free tool, it can read
taxonomy files and display them in a tree view of list view. This tool takes all
referenced linkbases into account and processes them to display the information
captured among different files in one, understandable overview. To view and
possibly edit these XBRL files, we also used another tool made by Fujitsu. The
Fujitsu XBRL tools are two different programs, the Taxonomy Editor and the
Instance Creator. These tools also present the XBRL files in a more understandable
way for people to read.

To create OWL files, we used different tools. The main tools used are Protégé and
IHMC Cmap Tools. The first, protégé, is a major tool used by a lot of people and is
widely accepted as producing correct OWL files. This tool however lacks the
possibility to display and edit ontologies in a graphical way. This is where Cmap
comes into play, the version we are using is 4.08 COE as this is the last version to
support OWL. The newest version does not have any support for OWL files. Cmap
Tools gives users the possibility to view and edit ontologies in a graphical way, this
is more intuitive than the lists provided by protégé. After saving the ontology as an
OWL file it can be imported by protégé to check if the produced file is correct.

Transforming XBRL into an OWL ontology 85

VII. List of images

Figure 1 – Parts of a taxonomy.. 34
Figure 2 – Hierarchy in a tuple... 45
Figure 3 – Basic structure of an XBRL-instance .. 50
Figure 4 – Structure of the Linkbase-element .. 51
Figure 5 – The cheatsheet... 54

Figure 1 – A schematic view of the NTP... 58
Figure 2 – A more abstract view of the NTP ... 59
Figure 3 – The ‘rpt-kvk-balansd-2006.xsd’ in Dutch.. 62
Figure 4 – The ‘rpt-kvk-balansd-2006.xsd’ in English 62

Figure 1 – Concept subsuming... 68
Figure 2 – Subsumption.. 69
Figure 3 – The RDF relationships.. 70

Transforming XBRL into an OWL ontology 86

VIII. List of examples and tables

Example 1 – Simple DVD description .. 6
Example 2 – An element in full .. 7
Example 3 – Empty elements .. 7
Example 4 – Extension to the DVD example .. 7
Example 5 – Wrong XML tag names ... 8
Example 6 – Correct element nesting ... 9
Example 7 – Incorrect element nesting ... 9
Example 8 – Extended DVD... 12
Example 9 – Part of a DTD.. 12
Example 10 – XML Schema (XSD).. 12
Example 11 – simpleType ... 13
Example 12 – complexType... 13
Example 13 – Sequence ... 14
Example 14 – The completed XSD.. 15
Example 15 – Value restriction .. 16
Example 16 – Value set restriction ... 16
Example 17 – Value series restriction ... 17
Example 18 – Number of characters restriction .. 17
Example 19 – Length restriction .. 17
Example 20 – A substitution group... 18
Example 21 – An XSD snippet ... 18
Example 22 – XML document 1.. 19
Example 23 – XML document 2.. 19
Example 24 – Example 19 revised.. 19
Example 25 – File 1 ... 22
Example 26 – File 2 ... 22
Example 27 – File 1 with prefix namespace ... 23
Example 28 – File 2 with default namespace.. 23
Example 29 – Schemalocation ... 24
Example 30 – The import-syntax ... 25
Example 31 – Importing a document into another .. 25
Example 32 – A snippet from moreInformation.xml .. 25
Example 33 – Import result when processed.. 26
Example 34 - XLink simple-type... 28

Transforming XBRL into an OWL ontology 87

Example 35 - XLink extended-type... 28
Example 36 - XLink extended-type with semantics ... 29
Table 1 – combinations of XLink-types and attributes (source: W3C 2001)......... 30
Table 2 – XLink-types and significant child types (source: W3C 2001) 31

Example 1 – Reference... 35
Example 2 - Labels .. 36
Example 3 – Presentation ... 36
Example 4 - Calculation.. 37
Example 5 – XBRL instance example .. 38
Example 6 – linkbaseRef notation .. 39
Table 1 - Roles in the linkbaseRef element .. 40
Example 7 – Items example .. 41
Example 8 – Context element XML schema.. 42
Example 9 – Tuples.. 45
Example 10 – Footnotes in different languages .. 46

Example 1 – Snippet from fs-kvk-balansd-2006-presentation.xml..................... 61
Example 1 – Attributes example .. 68
Example 2 – The RDF document definition... 70
Example 3 – The DVD’s in RDF .. 71
Example 4 – A resource as property ... 72
Table 1 – Container-types... 72
Example 5 – Part 1 of a RDFS.. 75
Example 6 – Part 2 of a RDFS.. 75
Example 7 – Part 3 of a RDFS.. 75

Transforming XBRL into an OWL ontology 88

IX. References

Arciniegas, F. A. (2000 Sep 18), “What Is XLink”,
<http://www.xml.com/pub/a/2000/09/xlink/index.html>. Accessed 2007 Jan 20.

Berners-Lee, T., Hendler, J. and Lassila, O. (2001 May), “The Semantic Web”,
<http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-
84A9809EC588EF21>. Accessed 2007 Feb 03.

Burg, H. J. van, (2005), ‘Reducing administrative burdens through standardisation’,
<http://www.xbrl-ntp.nl/english/Overviewntp10.pdf>

[Colostate.edu] (2007-01-27), “Sample Taxonomy Schema”,
http://ls103024.csulinuxhub.colostate.edu/moit04/xbrl/V2AnnotatedSchema.htm.
Accessed 2007-01-27.

[Ernst&Young] (2007-01-26), “What is a taxonomy?”,
http://www.ey.com/global/content.nsf/International/XBRL-What_are_Taxonomies.
Accessed 2007-01-26.

[Fujitsu] (2007 Feb 05), “Fujitsu XBRL Tools”,
<http://software.fujitsu.com/en/interstage-xwand/activity/xbrltools/> Accessed
2007 Feb 05.

Horridge, M., Knublauch, H., Rector, A., Stevens, R., Wroe, C. (2004 Aug 27), “A
Practical Guide To Building OWL Ontologies Using The Protége-OWL Plugin and CO-
ODE Tools Edition 1.0”, <http://www.co-
ode.org/resources/tutorials/ProtegeOWLTutorial.pdf>. Accessed 2007 Feb 05.

[IHMC.us] (2007 Feb 05), “IHMC CmapTools v4.08 COE”,
<http://cmap.ihmc.us/coe/beta/install.htm> Accessed 2007 Feb 05.

[man.ac.uk] (2007 Feb 05), “Tutorial on OWL”,
<http://www.cs.man.ac.uk/~horrocks/ISWC2003/Tutorial/>. Accessed 2007 Feb
05.

[Semansys] (2007-01-30), “Taxonomy Viewer V2”,
http://www.semansys.com/taxonomy_viewer.html. Accessed 2007-01-30.

[Stanford.edu] (2007 Feb 05), “What is an ontology and why we need it”,
<http://protege.stanford.edu/publications/ontology_development/ontology101-
noy-mcguinness.html>. Accessed 2007 Feb 05.

[Stanford.edu] (2007 Feb 05), “Protégé, the free, open source ontology editor and
knowledge-base framework”, <http://protege.stanford.edu/> Accessed 2007 Feb
05.

http://www.xml.com/pub/a/2000/09/xlink/index.html
http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://www.xbrl-ntp.nl/english/Overviewntp10.pdf
http://ls103024.csulinuxhub.colostate.edu/moit04/xbrl/V2AnnotatedSchema.htm
http://www.ey.com/global/content.nsf/International/XBRL-What_are_Taxonomies.%20Accessed%202007-01-26
http://www.ey.com/global/content.nsf/International/XBRL-What_are_Taxonomies.%20Accessed%202007-01-26
http://www.co-ode.org/resources/tutorials/ProtegeOWLTutorial.pdf
http://www.co-ode.org/resources/tutorials/ProtegeOWLTutorial.pdf
http://www.cs.man.ac.uk/%7Ehorrocks/ISWC2003/Tutorial/
http://www.semansys.com/taxonomy_viewer.html.%20Accessed%202007-01-30
http://protege.stanford.edu/publications/ontology_development/ontology101-noy-mcguinness.html
http://protege.stanford.edu/publications/ontology_development/ontology101-noy-mcguinness.html

Transforming XBRL into an OWL ontology 89

Vreeburg, T. e.a., “Web Enabled Business Reporting, de invloed van XBRL op het
verslaggevingsproces”, Ernst & Young, Kluwer, 2004.

Walmsley, P. (2002 Jan 18), “XML Schema: An Overview”,
<http://www.informit.com/articles/article.asp?p=25002&seqNum=7&rl=1>.
Accessed 2007 Jan 20.

[W3C] (2006 Aug 16). “Namespaces in XML 1.0 (Second Edition)”,
<http://www.w3.org/TR/REC-xml-names/>. Accessed 2007 Jan 20.

[W3C] (2004 Feb 10), “RDF Vocabulary Description Language 1.0: RDF Schema”,
<http://www.w3.org/TR/rdf-schema/>. Accessed 2007 Feb 05.

[W3C] (2004 Feb 10), “RDF/XML Syntax Specification (Revised)”,
<http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/>. Accessed
2007 Feb 05.

[W3Schools] (2007 Jan 22), “XML Attributes”,
<http://www.w3schools.com/xml/xml_attributes.asp>. Accessed 2007 Jan 22.

[W3C] (2001 Jun 27), “XML Linking Language (XLink) Version 1.0”,
<http://www.w3.org/TR/xlink/>. Accessed 2007 Jan 20.

[W3Schools] (2007 Jan 20), “XML Namespaces”,
<http://www.w3schools.com/xml/xml_namespaces.asp>. Accessed 2007 Jan 20.

[W3Schools] (2007 Jan 20), “XML Schema Example”,
<http://www.w3schools.com/schema/schema_example.asp>. Accessed 2007 Jan
20

[W3Schools] (2007 Jan 20), “XML Schema Import Element”,
<http://www.w3schools.com/schema/el_import.asp>. Accessed 2007 Jan 20.

[W3Schools] (2007 Mar 07), “XML Schema Restrictions/Facets”,
<http://www.w3schools.com/schema/schema_facets.asp>. Accessed 2007 Mar 07.

 [W3Schools] (2007 Jan 20), “XML Schema Tutorial”,
<http://www.w3schools.com/schema/default.asp>. Accessed 2007 Jan 20.

 [W3Schools] (2007 Jan 20), “XML Syntax”,
<http://www.w3schools.com/xml/xml_syntax.asp>. Accessed 2007 Jan 20.

[Wikipedia] (2007 Jan 22), “Extensible Stylesheet Language”,
<http://en.wikipedia.org/wiki/Extensible_Stylesheet_Language>. Accessed 2007
Jan 22.

http://www.informit.com/articles/article.asp?p=25002&seqNum=7&rl=1
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
http://www.w3schools.com/xml/xml_attributes.asp
http://www.w3.org/TR/xlink/
http://www.w3schools.com/xml/xml_namespaces.asp
http://www.w3schools.com/schema/schema_example.asp
http://www.w3schools.com/schema/el_import.asp
http://www.w3schools.com/schema/default.asp
http://www.w3schools.com/xml/xml_syntax.asp
http://en.wikipedia.org/wiki/Extensible_Stylesheet_Language

Transforming XBRL into an OWL ontology 90

[Wikipedia] (2007 Feb 05), “Ontology (Computer Science)”,
<http://en.wikipedia.org/wiki/Ontology_%28computer_science%29>. Accessed
2007 Feb 05.

 [Wikipedia] (2007 Feb 05), “Semantic Web”,
<http://en.wikipedia.org/wiki/Semantic_Web>. Accessed 2007 Feb 05.

[Wikipedia] (2007 Feb 05), “Web Ontology Language”,
<http://en.wikipedia.org/wiki/Web_Ontology_Language>. Accessed 2007 Feb 05.

[Wikipedia] (2007 Jan 22), “XML Schema (W3C)”,
<http://en.wikipedia.org/wiki/XML_Schema>. Accessed 2007 Jan 22.

[Wikipedia] (2007 Jan 22), “XSL Transformations”,
<http://en.wikipedia.org/wiki/XSL_Transformations>. Accessed 2007 Jan 22.

[XBRL.org] (2007-01-26), “XBRL Taxonomies”, http://www.xbrl.org/Taxonomies/.
Accessed 2007-01-25.

[XBRL.org] (2006-12-18), “XBRL 2.1 Recommendation”,
http://www.xbrl.org/Specification/XBRL-RECOMMENDATION-2003-12-
31+Corrected-Errata-2006-12-18.htm#_Toc156209131. Accessed 2007-01-25.

[XML.com] (1998 Oct 3), “A Technical Introduction to XML”,
<http://www.xml.com/pub/a/98/10/guide0.html>. Accessed 2007 Jan 20.

[ZVON] (2007 Jan 20), “9. Attribute arcrole”,
<http://www.zvon.org/xxl/xlink/Output/xlink_refs.html>. Accessed 2007 Jan 20.

http://en.wikipedia.org/wiki/Ontology_%28computer_science%29
http://en.wikipedia.org/wiki/Semantic_Web
http://en.wikipedia.org/wiki/Web_Ontology_Language
http://en.wikipedia.org/wiki/XML_Schema
http://en.wikipedia.org/wiki/XSL_Transformations
http://www.xbrl.org/Taxonomies/
http://www.xbrl.org/Specification/XBRL-RECOMMENDATION-2003-12-31+Corrected-Errata-2006-12-18.htm%23_Toc156209131
http://www.xbrl.org/Specification/XBRL-RECOMMENDATION-2003-12-31+Corrected-Errata-2006-12-18.htm%23_Toc156209131
http://www.xml.com/pub/a/98/10/guide0.html
http://www.zvon.org/xxl/xlink/Output/xlink_refs.html

